Morphological and mineralogical characterizations of oolitic iron ore in the Exi region, China

Shao-xian Song , Ernesto Fabian Campos-Toro , Yi-min Zhang , Alejandro Lopez-Valdivieso

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 113 -118.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (2) : 113 -118. DOI: 10.1007/s12613-013-0701-z
Article

Morphological and mineralogical characterizations of oolitic iron ore in the Exi region, China

Author information +
History +
PDF

Abstract

The morphological and mineralogical characterizations of a Chinese oolitic iron ore (Exi deposit) were studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy in this work. It is shown that the Exi ore is mainly composed of hematite, quartz, apatite, and chlorite. The hematite is present as the oolitic layers and in the spaces between the aggregated ooids; quartz exists as granular particles in the spaces and as nucleuses in ooids; the harmful mineral, apatite, is associated with hematite as the oolitic layers, fine dissemination, granular particles in the spaces, and nucleuses in ooids. From the viewpoint of mineral beneficiation, it is hard to separate apatite and chlorite but easy to separate quartz from hematite in the Exi iron ore in recovering the iron values.

Keywords

iron ores / mineralogy / morphology / scanning electron microscopy

Cite this article

Download citation ▾
Shao-xian Song, Ernesto Fabian Campos-Toro, Yi-min Zhang, Alejandro Lopez-Valdivieso. Morphological and mineralogical characterizations of oolitic iron ore in the Exi region, China. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 113-118 DOI:10.1007/s12613-013-0701-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abro M.I., Pathan A.G., Mallah A.H. Liberation of oolitic hematite grains from iron ore, Dilband mines Pakistan. Mehran Univ. Res. J. Eng. Technol., 2011, 30(2): 329.

[2]

Franceschelli M., Puxeddu M., Carta M. Mineralogy and geochemistry of Late Ordovician phosphatebearing oolitic ironstones from NW Sardinia, Italy. Mineral. Petrol., 2000, 69(3–4): 267.

[3]

R.J. Taj and A.A. Mesaed, Mechanism of formation of Haddat Ash Sham ironstones (Oligo-Miocene), Makkah Al Mokaramah District, West Central Arabian Shield, Saudi Arabia, Arabi. J. Geosci., 2012, DOI: 10.1007/s12517-012-0694-3

[4]

Kholodov V.N., Butuzova G.Yu. Problems of iron and phosphorus geochemistry in the Precambrian. Lithol. Miner. Resour., 2001, 36(4): 291.

[5]

Collin P.Y., Loreau J.P., Courville P. Depositional environments and iron ooid formation in condensed sections (Callovian-Oxfordian, south-eastern Paris basin, France). Sedimentology, 2005, 52(5): 969.

[6]

Sturesson U., Heikoop J.M., Risk M.J. Modern and Palaeozoic iron ooids: a similar volcanic origin. Sediment. Geol., 2000, 136(1–2): 137.

[7]

Moëlo Y., Lulzac Y., Rouer O., Palvadeau P., Gloaguen Léone P. Scandium mineralogy: pretulite with scandian zircon and xenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-des-Châteaux, Armorican Massif, France. Can. Mineral., 2002, 40, 1657.

[8]

Gloaguen E., Branquet Y., Boulvais P., Moëlo Y., Chauvel J.J., Chiappero P.J., Marcoux E. Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal-As-Sb-Au mineralisation during Hercynian strike-slip deformation. Miner. Deposita, 2007, 42(4): 399.

[9]

Wang G., Radziszewski P., Ouellet J. Particle modeling simulation of thermal effects on ore breakage. Comput. Mater. Sci., 2008, 43(4): 892.

[10]

Lu S., Pugh R.J., Forssberg E. Interfacial Separation of Particles, 2005, Amsterdam, Elsevier, 332.

[11]

Dana J.D. Manual of Mineralogy, 2010, Charleston, BiblioBazaar, 279.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/