Energy consumption of electrooxidation systems with boron-doped diamond electrodes in the pulse current mode

Jun-jun Wei , Xu-hui Gao , Li-fu Hei , Jawaid Askari , Cheng-ming Li

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 106 -112.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 106 -112. DOI: 10.1007/s12613-013-0700-0
Article

Energy consumption of electrooxidation systems with boron-doped diamond electrodes in the pulse current mode

Author information +
History +
PDF

Abstract

A pulse current technique was conducted in a boron-doped diamond (BDD) anode system for electrochemical wastewater treatment. Due to the strong generation and weak absorption of hydroxyl radicals on the diamond surface, the BDD electrode possesses a powerful capability of electrochemical oxidation of organic compounds, especially in the pulse current mode. The influences of pulse current parameters such as current density, pulse duty cycle, and frequency were investigated in terms of chemical oxygen demand (COD) removal, average current efficiency, and specific energy consumption. The results demonstrated that the relatively high COD removal and low specific energy consumption were obtained simultaneously only if the current density or pulse duty cycle was adjusted to a reasonable value. Increasing the frequency slightly enhanced the COD removal and average current efficiency. A pulse-BDD anode system showed a stronger energy saving ability than a constant-BDD anode system when the electrochemical oxidation of phenol of the two systems was compared. The results prove that the pulse current technique is more cost-effective and more suitable for a BDD anode system for real wastewater treatment. A kinetic analysis was presented to explain the above results.

Keywords

diamond films / boron / doping / electrochemical oxidation / hydroxyl radicals / energy consumption / wastewater treatment

Cite this article

Download citation ▾
Jun-jun Wei, Xu-hui Gao, Li-fu Hei, Jawaid Askari, Cheng-ming Li. Energy consumption of electrooxidation systems with boron-doped diamond electrodes in the pulse current mode. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(1): 106-112 DOI:10.1007/s12613-013-0700-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen G.H. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol., 2004, 38(1): 11.

[2]

Wei J.J., Zhu X.P., F.X., Ni J.R. Comparative study of oxidation ability between boron-doped diamond (BDD) and lead oxide (PbO2) electrodes. Int. J. Miner. Metall. Mater., 2011, 18(5): 589.

[3]

Hupert M., Muck A., Wang J., Stotter J., Cvackova Z., Haymond S., Show Y., Swain G.M. Conductive diamond thin-films in electrochemistry. Diamond Relat. Mater., 2003, 12(10–11): 1940.

[4]

Iniesta J., Michaud P.A., Panizza M., Cerisola G., Aldaz A., Comninellis C. electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta, 2001, 46(23): 3573.

[5]

Matsushima J.T., Silva W.M., Azevedo A.F., Baldan M.R., Ferreira N.G. The influence of boron content on electroanalytical detection of nitrate using BDD electrodes. Appl. Surf. Sci., 2009, 256(3): 757.

[6]

Hmani E., Sourour C.E., Samet Y., Ridha A. Electrochemical degradation of waters containing O-Toluidine on PbO2 and BDD anodes. J. Hazard. Mater., 2009, 170(2–3): 928.

[7]

Chen X.M., Chen G.H., Gao F.R., Yue P.L. High-performance Ti/BDD electrodes for pollutant oxidation. Environ. Sci. Technol., 2003, 37(21): 5021.

[8]

Chen X.M., Gao F.R., Chen G.H. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem., 2005, 35(2): 185.

[9]

Zhu X.P., Tong M.P., Shi S.Y., Zhao H.Z., Ni J.R. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environ. Sci. Technol., 2008, 42(13): 4914.

[10]

Panizza M., Cerisola G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta, 2005, 51(2): 191.

[11]

Kapałka A., Fóti G., Comninellis C. Investigations of electrochemical oxygen transfer reaction on bo ron-doped diamond electrodes. Electrochim. Acta, 2007, 53(4): 1954.

[12]

Murugananthan M., Yoshihara S., Rakuma T., Shirakashi T. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. J. Hazard. Mater., 2008, 154(1–3): 213.

[13]

Sun J.R., Lu H.Y., Du L.L., Lin H.B., Li H.D. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes. Appl. Surf. Sci., 2011, 257(15): 6667.

[14]

Zhu X.P., Ni J.R., Wei J.J., Xing X., Li H.N., Jiang Y. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. J. Hazard. Mater., 2010, 184(1–3): 493.

[15]

Schäfer L., Höfer M., Kröger R. The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films, 2006, 515(3): 1017.

[16]

Mascia M., Vacca A., Polcaro A.M., Palmas S., Ruiz J.R., da Pozzo A. Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: experimental study and mathematical model. J. Hazard. Mater., 2010, 174(1–3): 314.

[17]

Sirés I., Brillas E., Cerisola G., Panizza M. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. J. Electroanal. Chem., 2008, 613(2): 151.

[18]

Boye B., Brillas E., Marselli B., Michaud P.A., Comminellis C., Farnia G., Sandonà G. Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode. Electrochim. Acta, 2006, 51(14): 2872.

[19]

Panizza M., Michaud P.A., Cerisola G., Comninellis C. Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area. Electrochem. Commun., 2001, 3(7): 336.

[20]

Panizza M., Cerisola G. Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 1. Cyclic voltammetry and potential step experiments. Electrochim. Acta, 2003, 48(23): 3491.

[21]

Panizza M., Cerisola G. Electrochemical degradation of gallic acid on a BDD anode. Chemosphere, 2009, 77(8): 1060.

[22]

Wei J.J., Zhu X.P., Ni J.R. Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode. Electrochim. Acta, 2011, 56(15): 5310.

[23]

Polatides C., Dortsiou M., Kyriacou G. Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochim. Acta, 2005, 50(25–26): 5237.

[24]

Panizza M., Michaud P.A., Cerisola G., Comninellis C. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem., 2001, 507(1–2): 206.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/