Effect of Na+ on xonotlite crystals in hydrothermal synthesis

Fei Liu , Xiao-dan Wang , Jian-xin Cao

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 88 -93.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 88 -93. DOI: 10.1007/s12613-013-0698-3
Article

Effect of Na+ on xonotlite crystals in hydrothermal synthesis

Author information +
History +
PDF

Abstract

The effect of Na+ ion concentration on the crystalline phase composition and morphology of xonotlite crystals prepared in a CaO-SiO2-H2O system via hydrothermal synthesis was analyzed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicate that Na+ ion concentration has a significant impact on the composition and morphology of crystalline phases in the products under the initial conditions of a molar ratio of CaO/SiO2 of 1.0 and a reactant concentration of 0.05 mol·L−1 at 225°C for 15 h. The main crystalline phase in the products has a phase transition from xonotlite to pectolite, and the morphology changes from fibrous to broomlike shape with the Na+ ion concentration increasing. Therefore, the content of Na2O in the raw material should be less than 5wt% for preparing pure xonotlite crystals via hydrothermal synthesis in a CaO-SiO2-H2O system.

Keywords

crystals / xonotlite / pectolite / hydrothermal synthesis / morphology

Cite this article

Download citation ▾
Fei Liu, Xiao-dan Wang, Jian-xin Cao. Effect of Na+ on xonotlite crystals in hydrothermal synthesis. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(1): 88-93 DOI:10.1007/s12613-013-0698-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Churakov S.V., Mandaliev P. Structure of the hydrogen bonds and silica defects in the tetrahedral double chain of xonotlite. Cem. Concr. Res., 2008, 38(3): 300.

[2]

Li M.Q., Chen Y.F., Xia S.Q., Li J.H., Liang H.X. Microstructure and processing of ultra-light calcium silicate insulation material. J. Chin. Ceram. Soc., 2000, 28(5): 401.

[3]

Li M.Q., Liang H.X. Formation of micro-porous spherical particles of calcium silicate (xonotlite) in dynamic hydrothermal process. Chin. Particuol., 2004, 2(3): 124.

[4]

Shaw S., Clark S.M., Henderson C.M.B. Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study. Chem. Geol., 2000, 167, 129.

[5]

Glasser F.P., Hong S.Y. Thermal treatment of C S H gel at 1 bar H2O pressure up to 200°C. Cem. Concr. Res., 2003, 33(2): 271.

[6]

Milestone N.B., Ahari G. Hydrothermal processing of xonotlite based compositions. Adv. Appl. Ceram., 2007, 106(6): 302.

[7]

Udawatte C.P., Yanagisawa K., Kamakura T., Matsumoto Y., Yamasaki N. Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing. Mater. Lett., 2000, 45(6): 298.

[8]

Kunugiza K., Tsukiyama K., Teramura S. Direct formation of xonotlite fiber with continuous-type autoclave. Gypsum Lime, 1988, 216, 288.

[9]

Yanagisawa K., Feng Q., Yamasaki N. Hydrothermal synthesis of xonotlite whiskers by ion diffusion. J. Mater. Sci. Lett., 1997, 16(11): 889.

[10]

Li X.K., Chang J. A novel hydrothermal route to the synthesis of xonotlite nanofibers and investigation on their bioactivity. J. Mater. Sci., 2006, 41(15): 4944.

[11]

Liu F., Cao J.X., Zhu B. Effect of anion impurity on preparing xonotlite whiskers via hydrothermal synthesis. Adv. Mater. Res., 2011, 148–149, 1755.

[12]

Yoshimura M., Suda H., Okamoto K., Ioku K. Hydrothermal synthesis of biocompatible whiskers. J. Mater. Sci., 1994, 29(13): 3399.

[13]

Huang X., Jiang D.L., Tan S.H. Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability. Mater. Res. Bull., 2002, 37(11): 1885.

[14]

Takahashi K., Yamasaki N., Mishima K., Matsuyama K., Tomokage H. Coating of pulp fiber with xonotlite under hydrothermal conditions. J. Mater. Sci. Lett., 2002, 21(19): 1521.

[15]

Lin K.L., Chang J., Chen G. F., Ruan M.L., Ning C.Q. A simple method to synthesize single-crystalline β-wollastonite nanowires. J. Cryst. Growth, 2007, 300(2): 267.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/