Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor

Ai-min Chu , Ming-li Qin , Bao-rui Jia , Hui-feng Lu , Xuan-hui Qu

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 76 -81.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 76 -81. DOI: 10.1007/s12613-013-0696-5
Article

Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor

Author information +
History +
PDF

Abstract

Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precursor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to ∼20 μm. The precursor was subsequently calcined under nitrogen at 1200–1550°C for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300°C, and the complete transition of SiO2 into Si3N4 was found at 1550°C. The Si3N4 powders, synthesized at 1550°C, exhibit a mixture phase of α- and β-Si3N4 and consist of mainly agglomerates of fine particles of 100–300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.

Keywords

silicon nitride / powders / carbothermal reduction / combustion synthesis

Cite this article

Download citation ▾
Ai-min Chu, Ming-li Qin, Bao-rui Jia, Hui-feng Lu, Xuan-hui Qu. Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(1): 76-81 DOI:10.1007/s12613-013-0696-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Riley F.L. Silicon nitride and related materials. J. Am. Ceram. Soc., 2000, 83(2): 245.

[2]

Methivier C., Massardier J., Bertolini J.C. Pd/Si3N4 catalysts: preparation, characterization and catalytic activity for the methane oxidation. Appl. Catal. A, 1999, 182(2): 337.

[3]

Yamada T. Preparation and evaluation of sinterable silicon nitride powder by imide decomposition method. Am. Ceram. Soc. Bull., 1993, 72(5): 99.

[4]

Reidel R., Dressler W. Chemical formation of ceramics. Ceram. Int., 1996, 22(3): 233.

[5]

Cannon W.R., Danforth S.C., Flint J.H., Haggerty J.S., Marra R.A. Sinterable ceramic powders from laser-driven reactions: I. Process description and modeling. J. Am. Ceram. Soc., 1982, 65(7): 324.

[6]

Kostić G., Stefanović P.L., Pavlović P.B. Ther modynamic consideration of Si-N and Si-H-N systems for silicon nitride powder production in thermal plasma. Ceram. Int., 1996, 22(3): 179.

[7]

Cano I.G., Rodríguez M.A. Synthesis of β-silicon nitride by SHS: fiber growth. Scripta Mater., 2004, 50(3): 383.

[8]

Pablos A.D., Bermudo J., Osendi M.I. Microstructure and mechanical properties of silicon nitride materials fabricated from SHS powders. J. Am. Ceram. Soc., 2001, 84(5): 1033.

[9]

Guo C.L., Xing Z., Ma X.J., Xu L.Q., Qian Y.T. Solvothermal synthesis of Si3N4 nanomaterials at a low temperature. J. Am. Ceram. Soc., 2008, 91(5): 1725.

[10]

Wu X.C., Song W.H., Zhao B., Huang W.D., Pu M.H., Sun Y.P., Du J.J. Synthesis of coaxial nanowires of silicon nitride sheathed with silicon and silicon oxide. Solid State Commun., 2000, 115(12): 683.

[11]

Yang J.F., Shan S.Y., Janssen R., Schneider G., Ohji T., Kanzaki S. Synthesis of fibrous β-Si3N4 structured porous ceramics using carbothermal nitridation of silica. Acta Mater., 2005, 53(10): 2981.

[12]

Zhang S.C., Cannon W.R. Preparation of silicon nitride from silica. J. Am. Ceram. Soc., 1984, 67(10): 691.

[13]

Koc R., Kaza S. Synthesis of α-Si3N4 from carbon coated silica by carbothermal reduction and nitridation. J. Eur. Ceram. Soc., 1998, 18(10): 1471.

[14]

Chung S.L., Chang C.W. Carbothermal reduction and nitridation synthesis of silicon nitride by using solution combustion synthesized precursors. J. Mater. Sci., 2009, 44(14): 3784.

[15]

Vlasova M.V., Bartnitskaya T.S., Sukhikh L.L., Krushinskaya L.A., Tomila T.V., Artyuch S.Y. Mechanism of Si3N4 nucleation during carbothermal reduction of silica. J. Mater. Sci., 1995, 30(20): 5263.

[16]

Kurt A.O., Davies T.J. Synthesis of Si3N4 using sepiolite and various sources of carbon. J. Mater. Sci., 2001, 36(24): 5895.

[17]

Kingsley J.J., Patil K.C. A novel combustion process for the synthesis of fine particle α-alumina and related materials. Mater. Lett., 1988, 6(11-12): 427.

[18]

Kuang J.C., Zhang C.R., Zhou X.G., Wang S.Q. Influence of processing parameters on synthesis of nano-sized AlN powders. J. Cryst. Growth, 2004, 263(1–2): 12.

[19]

Qin M.L., Du X.L., Li Z.X., Humail I.S., Qu X.H. Synthesis of aluminum nitride powders by carbothermal reduction of a combustion synthesis precursor. Mater. Res. Bull., 2008, 43(11): 2954.

[20]

Moalla S., Kalfat R., Legrand A.P., Zarrouk H. Polysiloxane-diamine modified gel as precursor to crystalline/ amorphous Si3N4. J. Sol Gel Sci. Technol., 2003, 26(1–3): 125.

[21]

Sujirote K., Leangsuwan P. Silicon carbide formation from pretreated rice husks. J. Mater. Sci., 2003, 38(23): 4739.

[22]

Sitarz M., Handke M., Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra. Spectr. Acta Part A, 2000, 56(9): 1819.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/