Preparation of sol-gel derived microcrystalline corundum abrasives with hexagonal platelets

Na Li , Yu-Mei Zhu , Kai Gao , Zhi-Hong Li

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 71 -75.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 71 -75. DOI: 10.1007/s12613-013-0695-6
Article

Preparation of sol-gel derived microcrystalline corundum abrasives with hexagonal platelets

Author information +
History +
PDF

Abstract

The effects of different additives on the mechanical properties, microstructures, and wear behavior of corundum abrasives were investigated. When the number of additive phases increases, the sintering temperature and wear rate decrease, while the densification and mechanical properties increase. The additive SiO2 is responsible for the development of equiaxed grains, whereas both CaO and MgO promote the development of platelike grains. By controlling the molar ratio of additives, it is possible to obtain different microstructures. With SiO2-MgO-CaO (molar ratio, 2:1:1) as the additives and nano α-Al2O3 powders as the seed, microcrystalline corundum abrasives with hexagonal platelets were obtained using sol-gel process by sintering at 1300°C for 0.5 h. The average diameter and thickness of hexagonal platelets are 1.38 μm and 360 nm respectively, the single-particle compressive strength is 26.44 N, and the wear rate is (3.06±0.21)×10−7 mm3/(N·m).

Keywords

additives / corundum / microcrystals / sol-gel process / platelets / compressive strength / wear

Cite this article

Download citation ▾
Na Li, Yu-Mei Zhu, Kai Gao, Zhi-Hong Li. Preparation of sol-gel derived microcrystalline corundum abrasives with hexagonal platelets. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(1): 71-75 DOI:10.1007/s12613-013-0695-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Muchtar A., Lim L.C. Indentation fracture toughness of high purity submicron alumina. Acta Mater., 1998, 46(5): 1683.

[2]

Li Z.C., Li Z.H., Zhang A.J., Zhu Y.M. Synthesis and two-step sintering behavior of sol-gel derived nanocrystalline corundum abrasives. J. Eur. Ceram. Soc., 2009, 29(8): 1337.

[3]

Roy R.S., Guchhait H., Chanda A., Basu D., Mitra M.K. Improved sliding wear-resistance of alumina with sub-micron grain size: a comparison with coarser grained material. J. Eur. Ceram. Soc., 2007, 27(16): 4737.

[4]

Krell A., Blank P. The influence of shaping method on the grain size: dependence of strength in dense submicrometre alumina. J. Eur. Ceram. Soc., 1996, 16(11): 1189.

[5]

Ohji T., Jeong Y.K., Choa Y.H., Niihara K. Strengthening and toughening mechanisms of ceramic nanocomposites. J. Am. Ceram. Soc., 1998, 81(6): 1453.

[6]

Wu Y.Q., Zhang Y.F., Huang X.X., Guo J.K. Preparation of platelike nano alpha alumina particles. Ceram. Int., 2001, 27(3): 265.

[7]

Lu H.X., Sun H.W., Li G.X., Chen C.P., Yang D.L., Hu X. Microstructure and mechanical properties of Al2O3-MgB2 composites. Ceram. Int., 2005, 31(1): 105.

[8]

Handwerker C.A., Morris P.A., Coble R.L. Effects of chemical inhomogeneities on grain growth and microstructure in Al2O3. J. Am. Ceram. Soc., 1989, 72(1): 130.

[9]

Park C.W., Yoon D.Y. Effects of SiO2, CaO, and MgO additions on the grain growth of alumina. J. Am. Ceram. Soc., 2000, 83(10): 2605.

[10]

Riu D.H., Kong Y.M., Kim H.E. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3. J. Eur. Ceram. Soc., 2000, 20(10): 1475.

[11]

Horn D.S., Messing G.L. Anisotropic grain growth in TiO2-doped alumina. Mater. Sci. Eng. A, 1995, 195, 169.

[12]

Kim M.J., Cho Y.K., Yoon D.Y. Kinked grain boundaries in alumina doped with Y2O3. J. Am. Ceram. Soc., 2004, 87(4): 717.

[13]

Li J., Wu Y.S., Pan Y.B., Liu W.B., Guo J.K. Influence of fluorides on phase transition of α-Al2O3 formation. Ceram. Int., 2007, 33(6): 919.

[14]

Bateman C.A., Bennison S.J., Harmer M.P. Mechanism for the role of magnesia in the sintering of alumina containing small amounts of a liquid phase. J. Am. Ceram. Soc., 1989, 72(7): 1241.

[15]

Kaysser W.A., Sprissler M., Handwerker C.A., Blendell J.E. Effects of a liquid phase on the morphology of grain growth in alumina. J. Am. Ceram. Soc., 1987, 70(5): 339.

[16]

Ikegami T., Kotani K., Eguchi K. Some roles of MgO and TiO2 in densification of a sinterable alumina. J. Am. Ceram. Soc., 1987, 70(12): 885.

[17]

Zhao J.H., Harmer M.P. Sintering of ultra-high-purity alumina doped simultaneously with MgO and FeO. J. Am. Ceram. Soc., 1987, 70(12): 860.

[18]

Johnson W.C., Stein D.F. Additive and impurity distributions at grain boundaries in sintered alumina. J. Am. Ceram. Soc., 1975, 58(11–12): 485.

[19]

Taylor R.I., Coad J.P., Brook R.J. Grain boundary segregation in Al2O3. J. Am. Ceram. Soc., 1974, 57(12): 539.

[20]

Marcus H.L., Fine M.E. Grain-boundary segregation in MgO-doped Al2O3. J. Am. Ceram. Soc., 1972, 55(11): 568.

[21]

Altay A., Gülgün M.A. Microstructural evolution of calcium-doped α-alumina. J. Am. Ceram. Soc., 2003, 86(4): 623.

[22]

Odaka A., Yamaguchi T., Fujita T., Taruta S., Kitajima K. Densification of Ca-doped alumina nanopowders prepared by a new sol-gel route with seeding. J. Eur. Ceram. Soc., 2008, 28(13): 2479.

[23]

Goswami A.P., Roy S., Mitra M.K., Das G.C. Impurity-dependent morphology and grain growth in liquid-phase-sintered alumina. J. Am. Ceram. Soc., 2001, 84(7): 1620.

[24]

Erkalfa H., Misirli Z., Baykara T. The effect of TiO2 and MnO2 on densification and microstructural development of alumina. Ceram. Int., 1998, 24(2): 81.

[25]

Suryanarayana K.V., Panda P.K., Prabhu N., Rao B.T. Effect of simultaneous additions of niobia and magnesia on the sintering and microstructure of seeded boehmite. Ceram. Int., 1995, 21(3): 173.

[26]

Mendelson M.I. Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc., 1969, 52(8): 443.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/