Removal of zirconium from hydrous titanium dioxide

Xue-qin Ma , Ya-hui Liu , Jing-long Chu , Jie Li , Tian-yan Xue , Li-na Wang , Tao Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 1 -8.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2013, Vol. 20 ›› Issue (1) : 1 -8. DOI: 10.1007/s12613-013-0686-7
Article

Removal of zirconium from hydrous titanium dioxide

Author information +
History +
PDF

Abstract

A method was proposed for removing zirconium (Zr) from hydrous titanium dioxide (HTD) by the NaF solution. The effects of main parameters, i.e. pH values, NaF dosage, temperature and retention time, on the removal of zirconium were studied. The optimal conditions were found as the following: pH value, <5.5; molar ratio of NaF to TiO2, 0.6; retention time, 80 min; and temperature, 80°C. The removal rate of Zr under the optimized conditions was above 87.7%. The adsorption energy of the preferential absorption of hydrofluoric acid for Zr(OH)2SO4(OH2) on the (001) crystal surface of HTD was determined by theoretical calculation. The possible mechanism of the removal process was also discussed.

Keywords

zirconium / titanium dioxide / removal / density functional theory / microstructure / adsorption

Cite this article

Download citation ▾
Xue-qin Ma, Ya-hui Liu, Jing-long Chu, Jie Li, Tian-yan Xue, Li-na Wang, Tao Qi. Removal of zirconium from hydrous titanium dioxide. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(1): 1-8 DOI:10.1007/s12613-013-0686-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37.

[2]

Chen X.B., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7): 2891.

[3]

Liu J.H., Yong R., Li S.M. Preparation and characterization of high photoactive TiO2 catalyst using the UV irradiation-induced sol-gel method. J. Univ. Sci. Technol. Beijing, 2006, 13(4): 350.

[4]

Braun J.H., Baidins A., Marganski R.E. TiO2 pigment technology: a review. Prog. Org. Coat., 1992, 20(2): 105.

[5]

Barksdale J. Titanium: Its Occurrence, Chemistry, and Technology, 1966, New York, Ronald Press Co., 18.

[6]

Xue T.Y., Wang L.N., Qi T., Chu J.L., Qu J.K., Liu C.H. Decomposition kinetics of titanium slag in sodium hydroxide system. Hydrometallurgy, 2009, 95(1–2): 22.

[7]

Feng Y., Wang J.G., Wang L.N., Qi T., Xue T.Y., Chu J.L. Decomposition of acid dissolved titanium slag from Australia by sodium hydroxide. Rare Met., 2009, 28(6): 564.

[8]

Lin L., Wang J.G., Wang L.N., Chu J.L., Qi T., Xue T.Y. Separation of impurity from recycled alkaline solution in the clean production process of titanium dioxide. Chin. J. Process Eng., 2008, 8(5): 866.

[9]

Wang Y., Li J., Wang L.N., Xue T.Y., Qi T. Preparation of rutile titanium dioxide white pigment via doping and calcination of metatitanic acid obtained by the NaOH molten salt method. Ind. Eng. Chem. Res., 2010, 49(16): 7693.

[10]

Xiong B.K., Lin Z.H. Preparation Process and Application of Zirconium Dioxide, 2008, Beijing, Metallurgical Industry Press, 81.

[11]

M., Rao P.G., Wu J.Q. Preparation of zirconia-doped titania nanopowders by co-precipitation method and corresponding phase transformation. J. South Chin. Univ. Technol. Nat. Sci. Ed., 2006, 34(9): 95.

[12]

Reidy D.J., Holmes J.D., Morris M. A. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc., 2006, 26(9): 1527.

[13]

Venkatachalam N., Palanichamy M., Arabindoo B., Murugesan V. Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. J. Mol. Catal. A, 2007, 266(1–2): 158.

[14]

Johnson G., Weyl W.A. Influence of minor additions on color and electrical properties of rutile. J. Am. Ceram. Soc., 1949, 32(12): 398.

[15]

Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 1990, 92, 508.

[16]

Delley B. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, 113(18): 7756.

[17]

Perdew J.P. Generalized gradient approximations for exchange and correlation: a look backward and forward. Phys. B, 1991, 172(1–2): 1.

[18]

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[19]

Bergner A., Dolg M., Küchle W., Stoll H., Preuß H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys., 1993, 80(6): 1431.

[20]

Tolchev A.V., Pervushin V.Y., Kleshchev D.G. Hydrolysis of titanium(IV) sulfate solutions under hydrothermal conditions. Russ. J. Appl. Chem., 2001, 74(10): 1631.

[21]

Wang L.M., Ma J., Lie H.Y. Study on pyrohydrolysis mechanism and kinetics of titanium sulfate solution. Chin. J. Rare Met., 1991, 15(2): 95.

[22]

Imae T., Muto K., Ikeda S. The pH dependence of dispersion of TiO2 particles in aqueous surfactant solutions. Colloid Polym. Sci., 1991, 269(1): 43.

[23]

Mpandou A., Siffert B. Sodium carboxylate adsorption onto TiO2: shortest chain length allowing hemimicelle formation and shear plane position in the electric double layer. J. Colloid Interface Sci., 1984, 102(1): 138.

[24]

Haase F., Sauer J. The surface structure of sulfated zirconia: periodic ab initio study of sulfuric acid adsorbed on ZrO2(101) and ZrO2(001). J. Am. Chem. Soc., 1998, 120(51): 13503.

[25]

Lindén M., Blanchard J., Schancht S., Schunk S.A., Schüth F. Phase behavior and wall formation in Zr(SO4)2/CTABr and TiOSO4/CTABr mesophases. Chem. Mater., 1999, 11(10): 3002.

[26]

Zhang H., Wang Y., Liu P., Han Y.H., Yao X.D., Zou J., Cheng H.M., Zhao H.J. Anatase TiO2 crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. ACS Appl. Mater. Interfaces, 2011, 3, 2472.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/