Template-free synthesis of morphology- and size-controlled nano indium hydroxide

Chang-Yu Li , Shou-xin Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1154 -1161.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1154 -1161. DOI: 10.1007/s12613-012-0685-0
Article

Template-free synthesis of morphology- and size-controlled nano indium hydroxide

Author information +
History +
PDF

Abstract

Morphology- and size-controlled In(OH)3 nanocrystals were synthesized via a novel, low-cost and low-temperature (70°C) route in the absence of any template and surfactant. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) with selected area electron diffraction (SAED). The morphology and size of In(OH)3 nanostructures can be controlled by adjusting the reaction conditions such as the reaction time, the concentration of the alkali, and the alkaline source. A possible mechanism for the evolution of the morphology- and size-controlled In(OH)3 was proposed. In addition, the optical properties of the In(OH)3 prepared by this method were studied by diffuse reflection spectra (DRS) and photoluminescence (PL) spectroscopy, and the results exhibit an obvious change of adsorption edges. The thermal behaviors of the as-prepared products were also explored by thermo-gravimetric (TG) and differential scanning calorimetry (DSC) measurements. According to the results of TG-DSC, the pure phase and uniformity of the In2O3 nanocube and nanorod can be obtained by annealing In(OH)3 precursors directly at 300°C.

Keywords

indium hydroxide / synthesis / nanocrystals / nanostructures / morphology / optical properties

Cite this article

Download citation ▾
Chang-Yu Li, Shou-xin Liu. Template-free synthesis of morphology- and size-controlled nano indium hydroxide. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1154-1161 DOI:10.1007/s12613-012-0685-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kang Z.H., Wang E.B., Gao L., Lian S.Y., Jiang M., Hu C.W., Xu L. One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite. J. Am. Chem. Soc., 2003, 125, 13652.

[2]

Lian S.Y., Wang E.B., Kang Z.H., Bai Y.P., Gao L., Jiang L.M., Hu C.W., Xu L. Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun., 2004, 129(8): 485.

[3]

Cao M.H., He X.Y., Chen J., Hu C.W. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst. Growth Des., 2007, 7(1): 170.

[4]

Jiang P., Bertone J.F., Colvin V.L. A lost-wax approach to monodisperse colloids and their crystals. Science, 2001, 291, 453.

[5]

Yang L.X., Zhu Y.J., Tong H., Liang Z.H., Li L., Zhang L. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. J. Solid State Chem., 2007, 180(7): 2095.

[6]

Park S.J., Kim S., Lee S., Khim Z.G., Char K., Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc., 2000, 122, 8581.

[7]

Chen D.L., Gao L. A new and facile route to ultrafine nanowires, superthin flakes and uniform nanodisks of nickel hydroxide. Chem. Phys. Lett., 2005, 405, 159.

[8]

Yan T.J., Wang X.X., Long J.L., Liu P., Fu X.L., Zhang G.Y., Fu X.Z. Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes. J. Colloid Interface Sci., 2008, 325(2): 425.

[9]

Yan T.J., Long J.L., Chen Y.S., Wang X.X., Li D.Z., Fu X.Z. Indium hydroxide: a highly active and low deactivated catalyst for photoinduced oxidation of benzene. C. R. Chim., 2008, 11, 101.

[10]

Lei Z.B., Ma G.J., Liu M.Y., You W.S., Yan H.J., Wu G.P., Takata T., Hara M., Domen K., Li C. Sulfur substituted and zinc doped In(OH)3: a new class of catalyst for photocatalytic H2 production from water under visible light illumination. J. Catal., 2006, 237, 322.

[11]

Ishida T., Kuwabara K., Koumoto K. Formation and characterization of indium hydroxide films. J. Ceram. Soc. Jpn., 1998, 106(4): 381.

[12]

Bayón R., Maffiotte C., Herrero J. Chemical bath deposition of indium hydroxy sulphide thin films: process and XPS characterization. Thin Solid Films., 1999, 353(1–2): 100.

[13]

Bayón R., Herrero J. Reaction mechanism and kinetics for the chemical bath deposition of In(OH)xSy. Thin Solid Films, 2001, 387(1–2): 111.

[14]

Poznyak S.K., Kulak A.I. Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes. Electrochim. Acta, 2000, 45, 1595.

[15]

Xu J.Q., Wang X.H., Shen J.N. Hydrothermal synthesis of In2O3 for detecting H2S in air. Sens. Actuator. B., 2006, 115, 642.

[16]

Cheng Z.X., Dong X.B., Pan Q.Y., Zhang J.C., Dong X.W. Preparation and characterization of In2O3 nanorods. Mater. Lett., 2006, 60, 3137.

[17]

Tang Q., Zhou W.J., Zhang W., Ou S.M., Jiang K., Yu W.C., Qian Y.T. Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst. Growth Des., 2005, 5(1): 147.

[18]

Liang H., Wang Z.Y., Wang N., Li Y., Yang J. Hydrothermal synthesis of indium hydroxide nanocubes. Mater. Lett., 2004, 58, 2631.

[19]

Du J., Yang M., Cha S.N., Rhen D., Kang M.D., Kang J. Indium hydroxide and indium oxide nanospheres, nanoflowers, microcubes, and nanorods: synthesis and optical properties. Cryst. Growth Des., 2008, 8(7): 2313.

[20]

Lu X.F., Wang T., Zhang X.Z., Qiu A.G., Cui D.L. Synthesis and characterization of In(OH)3 nanocubes. J. Phys. Conf. Ser., 2009, 188, 012010.

[21]

Motta F.V., Lima R.C., Marques A.P.A., Li M.S., Leite E.R., Varela J.A., Longo E. Indium hydroxide nanocubes and microcubes obtained by microwave-assisted hydrothermal method. J. Alloys Compd., 2010, 497, L25.

[22]

Huang J.H., Gao L. Anisotropic growth of In(OH)3 nanocubes to nanorods and nanosheets via a solution-based seed method. Cryst. Growth Des., 2006, 6(6): 1528.

[23]

Zhu H.L., Yao K.H., Wo Y.H., Wang N.Y., Wang L.N. Hydrothermal synthesis of single crystalline In(OH)3 nanorods and their characterization. Semicond. Sci. Technol., 2004, 19, 1020.

[24]

Li C.Y., Lian S.Y., Liu Y., Liu S.X., Kang Z.H. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods. Mater. Res. Bull., 2010, 45, 109.

[25]

Yang J., Lin C.K., Wang Z.L., Lin J. In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorg. Chem., 2006, 45(22): 8973.

[26]

Zhu H., Wang X.L., Wang Z.J., Yang C., Yang F., Yang X.R. Self-assembled 3D microflowery In(OH)3 architecture and its conversion to In2O3. J. Phys. Chem. C, 2008, 112(39): 15285.

[27]

Xu L.P., Ding Y.S., Chen C.H., Zhao L.L., Rimkus C., Joesten R., Suib S.L. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem. Mater., 2008, 20(1): 308.

[28]

Zhong L.S., Hu J.S., Liang H.P., Cao A.M., Song W.G., Wan L.J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18, 2426.

[29]

Luo Y.S., Li S.Q., Ren Q.F., Liu J.P., Xing L.L., Wang Y., Yu Y., Jia Z.J., Li J.L. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route. Cryst. Growth Des., 2007, 7(1): 87.

[30]

Shi Z., Wang W., Zhang Z.K. Synthesis and characterization of indium hydroxide truncated polyhedral microcrystals. Mater. Lett., 2008, 62(27): 4293.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/