Simple point contact WO3 sensor for NO2 sensing and relevant impedance analysis

Wu-bin Gao , Yun-han Ling , Xu Liu , Jia-lin Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1142 -1148.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1142 -1148. DOI: 10.1007/s12613-012-0683-2
Article

Simple point contact WO3 sensor for NO2 sensing and relevant impedance analysis

Author information +
History +
PDF

Abstract

A simple and new point contact tungsten trioxide (WO3) sensor, which can be prepared by the oxidation of tungsten filaments via in-situ induction heating, likely detects low concentration (ppm level) environmental pollutants such as NO2. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were applied to characterize the phase and the microstructure of the samples, respectively. It was found that the synthesized WO3 films exhibited a monoclinic phase and were composed of hierarchical microcrystals and nanocrystals. The point contact WO3 sensor (W-WO3-W) showed rectifying characteristics and an ideal sensing performance of about 110°C. A single semicircle in Nyquist plots was recorded by electrochemical impedance spectroscopy (EIS) at a relatively low temperature of 150°C but faded away above 200°C, which revealed that the sensing process was governed by a determining factor, i.e., grain boundaries at the contact site.

Keywords

gas sensors / titanium alloys / shape memory effect / ion implantation / oxidation / corrosion resistance / tungsten trioxide / metal oxide semiconductors / thin films / microcrystals / nanocrystals / electrochemical impedance spectroscopy (EIS)

Cite this article

Download citation ▾
Wu-bin Gao, Yun-han Ling, Xu Liu, Jia-lin Sun. Simple point contact WO3 sensor for NO2 sensing and relevant impedance analysis. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1142-1148 DOI:10.1007/s12613-012-0683-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiménez I., Arbiol J., Dezanneau G., Cornet A., Morant J.R. Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sens. Actuators B, 2003, 93, 475.

[2]

Granqvist C.G. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells, 2000, 60, 201.

[3]

Wang X.S., Miura N., Yamazoe N. Study of WO3-based sensing materials for NH3 and NO detection. Sens. Actuators B, 2000, 66, 74.

[4]

Solis J.L., Saukko S., Kish L.B., Granqvist C.G., Lantto V. Nanocrystalline tungsten oxide thick-films with high sensitivity to H2S at room temperature. Sens. Actuators B, 2001, 77, 316.

[5]

Pollleux J., Gurlo A., Barsan N., Weimar U., Antonietti M., Niederberger M. Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed., 2005, 45, 261.

[6]

You L., Sun Y.F., Ma J., Guan Y., Sun J.M., Du Y., Lu G.Y. Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sens. Actuators B, 2011, 157, 401.

[7]

Qin Y.X., Shen W.J., Li X., Hu M. Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens. Actuators B, 2011, 155, 646.

[8]

Blo M., Carotta M.C., Galliera S., Gherardi S., Giberti A., Guidi V., Malagú C., Martinelli G., Sacerdoti M., Vendemiati B., Zanni A. Synthesis of pure and loaded powders of WO3 for NO2 detection through thick film technology. Sens. Actuators B, 2004, 103, 213.

[9]

Stankova M., Vilanova X., Llobet E., Calderer J., Bittencourt C., Pireaux J.J., Correig X. Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors. Sens. Actuators B, 2005, 105, 271.

[10]

Cantalini C., Sun H.T., Faccio M., Pelino M., Santucci S., Lozzi L., Passacantando M. NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sens. Actuators B, 1996, 60, 81.

[11]

Song S.W., Kang I.S. A facile fabrication route to tungsten oxide films on ceramic substrates. Sens. Actuators B, 2008, 129, 971.

[12]

Liu Z.F., Miyauchi M., Yamazaki T., Shen Y.B. Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sens. Actuators B, 2009, 140, 514.

[13]

Sivakumar R., Raj A.M.E., Subramanian B., Jayachandran M., Trivedi D.C., Sanjeeviraja C. Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices. Mater. Res. Bull., 2004, 39, 1479.

[14]

Zhang C., Debliquy M., Boudiba A., Liao H.L., Coddet C. Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sens. Actuators B, 2010, 144, 280.

[15]

Kawasaki H., Namba J., Iwatsuji K., Suda Y., Wada K., Ebihara K., Ohshima T. NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method. Appl. Surf. Sci., 2002, 197–198, 547.

[16]

Siciliano T., Tepore A., Micocci G., Serra A., Manno D., Filippo E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sens. Actuators B, 2008, 133, 321.

[17]

Eranna G., Joshi B.C., Runthala D.P., Gupta R.P. Oxide materials for development of integrated gas sensors: a comprehensive review. Crit. Rev. Solid State Mater. Sci., 2004, 29, 111.

[18]

Weingand T., Kuba S., Hadjiivanov K., Knözinger H. Nature and reactivity of the surface species formed after NO adsorption and NO+O2 coadsorption on a WO3-ZrO2 catalyst. J. Catal., 2002, 209, 539.

[19]

Bauerle J.E. Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids, 1969, 30, 2657.

[20]

Abrantes J.C.C., Labrincha J.A., Frade J.R. Alternative representation of impedance spectra of ceramics. Mater. Res. Bull., 2000, 35, 727.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/