Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy

Sheng-nan Wang , Yan Li , Ting-ting Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1134 -1141.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1134 -1141. DOI: 10.1007/s12613-012-0682-3
Article

Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy

Author information +
History +
PDF

Abstract

A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.

Keywords

nickel alloys / titanium alloys / shape memory effect / ion implantation / oxidation / corrosion resistance

Cite this article

Download citation ▾
Sheng-nan Wang, Yan Li, Ting-ting Zhao. Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1134-1141 DOI:10.1007/s12613-012-0682-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Otsuka K., Wayman C.M. Otsuka K., Wayman C.M. Shape Memory Materials, 1998, Cambridge, Cambridge University Press, 1.

[2]

Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci., 2005, 50(5): 511.

[3]

Duerig T., Pelton A., Stöckel D. An overview of nitinol medical applications. Mater. Sci. Eng. A, 1999, 273–275, 149.

[4]

Wataha J.C., O’Dell N.L., Singh B.B., Ghazi M., Whitford G.M., Lockwood P.E. Relating nickel-induced tissue inflammation to nickel release in vivo. J. Biomed. Mater. Res., 2001, 58(5): 537.

[5]

Plant S.D., Grant D.M., Leach L. Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials, 2005, 26(26): 5359.

[6]

Liu X.M. Surface Modification of NiTi Shape Memory Alloys, 2008, Hong Kong, City University of Hong Kong, 20.

[7]

Tan L., Crone W.C., Sridharan K. Fretting wear study of surface modified Ni-Ti shape memory alloy. J. Mater. Sci. Mater. Med., 2002, 13(5): 501.

[8]

Tan L., Dodd R.A., Crone W.C. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation. Biomaterials, 2003, 24(22): 3931.

[9]

Liu X.M., Wu S.L., Chan Y.L., Chu P.K., Chung C.Y., Chu C.L., Yeung K.W.K., Lu W.W., Cheung K.M.C., Luk K.D.K. Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation. Mater. Sci. Eng. A, 2007, 444(1–2): 192.

[10]

Shevchenko N., Pham M.T., Maitz M.F. Studies of surface modified NiTi alloy. Appl. Surf. Sci., 2004, 235(1–2): 126.

[11]

Poon R.W.Y., Yeung K.W.K., Liu X.Y., Chu P.K., Chung C.Y., Lu W.W., Cheung K.M.C., Chan D. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys. Biomaterials, 2005, 26(15): 2265.

[12]

Poon R.W.Y., Ho J.P.Y., Liu X., Chung C.Y., Chu P.K., Yeung K.W.K., Lu W.W., Cheung K.M.C. Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys. Mater. Sci. Eng. A, 2005, 390(1–2): 444.

[13]

Poon R.W.Y., Ho J.P.Y., Liu X.Y., Chung C.Y., Chu P.K., Yeung K.W.K., Lu W.W., Cheung K.M.C. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B, 2005, 237(1–2): 411.

[14]

Cheng Y., Wei C., Gan K.Y., Zhao L.C. Surface modification of TiNi alloy through tantalum immersion ion implantation. Surf. Coat. Technol., 2004, 176(2): 261.

[15]

Li Y., Wei S.B., Cheng X.Q., Zhang T., Cheng G. Corrosion behavior and surface characterization of tantalum implanted TiNi alloy. Surf. Coat. Technol., 2008, 202(13): 3017.

[16]

Zhao T.T., Yang R.X., Zhong C., Li Y., Xiang Y. Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro. J. Mater. Sci., 2011, 46(8): 2529.

[17]

Li Y., Zhao T.T., Wei S.B., Xiang Y., Chen H. Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum. Mater. Sci. Eng. C, 2010, 30(8): 1227.

[18]

Zeng C.L., Li M.C., Liu G.Q., Wu W.T. Air oxidation of Ni-Ti alloys at 650–850°C. Oxid. Met., 2002, 58(1–2): 171.

[19]

Chu C.L., Wu S.K., Yen Y.C. Oxidation behavior of equiatomic TiNi alloy in high temperature air environment. Mater. Sci. Eng. A, 1996, 216(1–2): 193.

[20]

Firstov G.S., Vitchev R.G., Kumar H., Blanpain B., Humbeeck J.V. Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002, 23(24): 4863.

[21]

Xu C.H., Ma X.Q., Shi S.Q., Woo C.H. Oxidation behavior of TiNi shape memory alloy at 450–750°C. Mater. Sci. Eng. A, 2004, 371(1–2): 45.

[22]

Michiardi A., Aparicio C., Planell J.A., Gil F.J. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J. Biomed. Mater. Res. Part B, 2006, 77(2): 249.

[23]

Starosvetsky D., Gotman I. Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy. Biomaterials, 2001, 22(13): 1853.

[24]

Lausmaa J., Kasemo B., Mattsson H., Odelius H. Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl. Surf. Sci., 1990, 45(3): 189.

[25]

Wong M.H., Cheng F.T., Man H.C. In situ hydrothermal synthesis of oxide film on NiTi for improving corrosion resistance in Hanks’ solution. Scripta Mater., 2007, 56(3): 205.

[26]

L. Zhu, J.M. Fino, and A.R. Pelton, Oxidation of Nitinol, [in] SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Monterey, 2003, p.360.

[27]

Liu J.X., Chen J.H., Yang D.Z., Wang W.Q., Wang Y.N., Cai Y.J. Characterization of TiO2/Ta2O5 films synthesized by ion beam on NiTi alloy for biomedical applications. J. Mater. Sci. Technol., 2001, 17, S35.

[28]

Koike M., Cai Z., Fujii H., Brezner M., Okabe T. Corrosion behavior of cast titanium with reduced surface reaction layer made by a face-coating method. Biomaterials, 2003, 24(25): 4541.

[29]

Vojtěch D., Fojt J., Joska L., Novák P. Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior. Surf. Coat. Technol., 2010, 204(23): 3895.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/