Influence of CO2 laser welding parameters on the microstructure, metallurgy, and mechanical properties of Mg-Al alloys

Chun-ming Lin , Hsien-lung Tsai , Chang-lin Lee , Di-shiang Chou , Sun-fen Lee , Jen-ching Huang , Jyun-wei Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1114 -1120.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1114 -1120. DOI: 10.1007/s12613-012-0679-y
Article

Influence of CO2 laser welding parameters on the microstructure, metallurgy, and mechanical properties of Mg-Al alloys

Author information +
History +
PDF

Abstract

This study investigated the microstructural characteristics, metallurgy, microhardness, and tensile strength of AZ31 and AZ61 magnesium alloy weldments, fabricated in a CO2 laser welding process with the adjustment of various parameters. The results show that the AZ31 weldment contains equiaxed grains within the fusion zone (FZ). By contrast, the FZ of the AZ61 weldment contains refined cellular grains and the partially melted zone (PMZ) contains bulk grains. We infer that the difference in aluminum content between the two magnesium alloys results in different supercooling rates and solid grain structures. For both weldments, the ultimate tensile strength (UTS) decreases following the CO2 laser welding process. However, no significant difference is noted between the UTS of the two weldments, suggesting that tensile strength is insensitive to the Al content of the magnesium alloy. The CO2 laser welding process is shown to increase the microhardness of both magnesium alloys. Furthermore, grain refinement is responsible for the maximum hardness in the FZ of both weldments. The AZ61 weldment has a higher content of Al, resulting in a greater grain refinement.

Keywords

magnesium alloys / laser welding / microstructure / mechanical properties / morphology

Cite this article

Download citation ▾
Chun-ming Lin, Hsien-lung Tsai, Chang-lin Lee, Di-shiang Chou, Sun-fen Lee, Jen-ching Huang, Jyun-wei Huang. Influence of CO2 laser welding parameters on the microstructure, metallurgy, and mechanical properties of Mg-Al alloys. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1114-1120 DOI:10.1007/s12613-012-0679-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu L.M., Wang J.F., Song G. Hybrid laser-TIG welding, laser Beam welding and gas tungsten arc welding of AZ31B magnesium alloy. Mater. Sci. Eng. A, 2004, 381, 129.

[2]

Yang P., Zhao Z., Ren X.P., Huang S.D. Microstructure, textures and deformation behaviors of fine-grained magnesium alloy AZ31. J. Mater. Sci. Technol., 2005, 21, 331.

[3]

Chen Y.J., Wang Q.D., Peng J.G., Zhai C.Q., Ding W.J. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. J. Mater. Process. Technol., 2007, 182, 281.

[4]

Lin C.M., Liu J.J., Tsai H.L., Cheng C.M. Evolution of microstructures and mechanical properties of AZ31-B magnesium alloy weldment with active oxide fluxes and GTAW process. J. Chin. Inst. Eng., 2011, 34, 1013.

[5]

Park J.S., Lim K.M. Effect of laser welding variables on the formability of 3wt% Si-added steel welds. Mater. Manuf. Processes, 2009, 24(4): 431.

[6]

Liu L.M., Hao X.F. Low-power laser/TIG hybrid welding process of magnesium alloy with filler wire. Mater. Manuf. Processes, 2010, 25, 1213.

[7]

Li J., Jiang X.Q. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy. Mater. Sci. Forum, 2011, 686, 53.

[8]

Lin C.M., Tsai H.L., Lee C.L., Chou D.S., Huang J.C. Evolution of microstructures and properties of magnesium alloy weldments produced with CO2 laser process. Mater. Sci. Eng. A, 2012, 548, 12.

[9]

ASTM Standard E8M, ASTM, 2009.

[10]

Quan Y.J., Chen Z.H., Gong X.S., Yu Z.H. CO2 laser beam welding of dissimilar magnesium-based alloys. Mater. Sci. Eng. A, 2008, 496, 45.

[11]

Quan Y.J., Chen Z.H., Gong X.S., Yu Z.H. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31. Mater. Charact., 2008, 59, 1491.

[12]

Cao X., Jahazi M., Immarigeon J.P., Wallace W. A review of laser welding techniques for magnesium alloys. J. Mater. Process. Technol, 2006, 171, 188.

[13]

Min D., Shen J., Lai S.Q., Chen J. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Mater. Charact., 2009, 60, 1583.

[14]

Zhao H., Debroy T. Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metall. Mater. Trans. B, 2001, 32, 163.

[15]

Sindo K. Welding Metallurgy, 2002, Hoboken, John Wiley & Sons, 674.

[16]

Li Y.B., Huang J.F., Cui H., Tao K., Zhang K., Zhang J. Characterization of microstructure evolution and mechanical properties of the spray-deposited AZ31 magnesium alloy. J. Univ. Sci. Technol. Beijing, 2008, 15, 740.

[17]

Hehmann F., Sommer F., Predel B. Extension of solid solubility in magnesium by rapid solidification. Mater. Sci. Eng. A, 1990, 125, 249.

[18]

Chi C.T., Chao C.G., Liu T.F., Lee C.H. Aluminum element effect for electron beam welding of similar and dissimilar magnesium-aluminum-zinc alloys. Scripta Mater., 2007, 56, 733.

[19]

Padmanaban G., Balasubramanian V. Fatigue performance of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints. Mater. Des., 2010, 31, 3724.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/