Study on the impact force and green properties of high-velocity compacted aluminum alloy powder

Xian-jie Yuan , Hai-qing Yin , Rafi-ud Din , Dil-faraz Khan , Xuan-hui Qu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1107 -1113.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1107 -1113. DOI: 10.1007/s12613-012-0678-z
Article

Study on the impact force and green properties of high-velocity compacted aluminum alloy powder

Author information +
History +
PDF

Abstract

High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green density of an aluminum alloy is found to be 2.783 g·cm−3. The ejection force for the aluminum alloy is in the range of 23 to 80 kN and the spring back is found to be less than 0.40%. The hardness of the green body is in the range of HRB 30 to 70. The bending strength of the green body is in the range of 6 to 26 MPa, which are higher than that of other aluminum alloys prepared by the traditional compaction method.

Keywords

aluminum alloys / powders / powder metallurgy / compaction / impact / mechanical properties

Cite this article

Download citation ▾
Xian-jie Yuan, Hai-qing Yin, Rafi-ud Din, Dil-faraz Khan, Xuan-hui Qu. Study on the impact force and green properties of high-velocity compacted aluminum alloy powder. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1107-1113 DOI:10.1007/s12613-012-0678-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gökçe A., Findik F., Kurt A.O. Microstructural exami nation and properties of premixed Al-Cu-Mg powder metallurgy alloy. Mater. Charact., 2011, 62(7): 730.

[2]

LaDelpha A.D.P., Mosher M.P., Caley W.F., Kipouros G.J., Bishop D.P. On the simulation of wrought AA4032 via P/M processing. Mater. Sci. Eng. A, 2008, 479(1–2): 1.

[3]

Vasudevan V.K., Fraser H.L. The microstructures of rapidly solidified and heat-treated Al-8Fe-2Mo-Si alloys. Mater. Sci. Eng., 1988, 98, 131.

[4]

Mosher W.G.E., Kippouros G.J., Caley W.F., Donaldson I.W., Bishop D.P. On hot deformation of aluminium-silicon powder metallurgy alloys. Powder Metall., 2011, 54(3): 366.

[5]

MacAskill I.A., Heard D.W., Bishop D.P. Effects of silicon on the metallurgy and sintering response of Al-Ni-Mg PM alloys. Mater. Sci. Eng. A, 2007, 452–453, 688.

[6]

LaDelpha A.D.P., Neubing H., Bishop D.P. Metallurgical assessment of an emerging Al-Zn-Mg-Cu P/M alloy. Mater. Sci. Eng. A, 2009, 520(1–2): 105.

[7]

Mann R.E.D., Hexemer R.L., Donaldson I.W., Bishop D.P. Hot deformation of an Al-Cu-Mg powder metallurgy alloy. Mater. Sci. Eng. A, 2011, 528(16–17): 5476.

[8]

Dunnett K.S., Mueller R.M., Bishop D.P. Development of Al-Ni-Mg-(Cu) aluminum P/M alloys. J. Mater. Process. Technol., 2008, 198(1–3): 31.

[9]

Ericsson T., Luukkonen P. Residual stresses in green bodies of steel powder after conventional and high speed compaction. Mater. Sci. Forum, 2002, 404–407, 77.

[10]

Wang J.Z., Qu X.H., Yin H.Q., Yi M.J., Yuan X.J. High velocity compaction of ferrous powder. Powder Technol., 2009, 192, 131.

[11]

Yan Z.Q., Chen F., Cai Y.X. High-velocity compaction of titanium powder and process characterization. Powder Technol., 2011, 208, 596.

[12]

Vojtěch D., Michalcová A., Pilch J., Šittner P., Šerák J., Novák P. Structural characteristics and thermal stability of Al-5.7Cr-2.5Fe-1.3Ti alloy produced by powder metallurgy. J. Alloys Compd., 2009, 475(1–2): 151.

[13]

Wang J.Z., Yin H.Q., Qu X.H., Johnson J.L. Effect of multiple impacts on high velocity pressed iron powder. Powder Technol., 2009, 195(3): 184.

[14]

Arribas I., Martín J.M., Castro F. The initial stage of liquid phase sintering for an Al-14Si-2.5Cu-0.5Mg (wt%) P/M alloy. Mater. Sci. Eng. A, 2010, 527(16–17): 3949.

[15]

Wang J.Z., Qu X.H., Yin H.Q., Zhou S.Y., Yi M.J. High velocity compaction of electrolytic copper powder. Chin. J. Nonferrous Met., 2008, 18(8): 1498.

[16]

Dore F., Lazzarotto L., Bourdin S. High velocity compaction: overview of materials, applications and potential. Mater. Sci. Forum, 2007, 534–536, 293.

[17]

Skoglund P. High density PM parts by high velocity compaction. Powder Metall., 2001, 44(3): 199.

[18]

Heard D.W., Donaldson I.W., Bishop D.P. Metallurgical assessment of a hypereutectic aluminum-silicon P/M alloy. J. Mater. Process. Technol., 2009, 209(18–19): 5902.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/