Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel

Suyitno , Budi Arifvianto , Teguh Dwi Widodo , Muslim Mahardika , Punto Dewo , Urip Agus Salim

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1093 -1099.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1093 -1099. DOI: 10.1007/s12613-012-0676-1
Article

Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel

Author information +
History +
PDF

Abstract

The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corrosion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% and sandblasted for 20 min using SiC particles with a diameter of 500–700 μm and an air flow with 0.6–0.7 MPa pressure. The microhardness distribution and tensile test were conducted and a measurement on the corrosion current density was done to determine the corrosion rate of the specimens. The result shows that the cold working enhances the bulk microhardness, tensile and yield strength of the specimen by the degree of deformation applied in the treatment. The sandblasting treatment increases the microhardness only at the surface of the specimen without or with a low degree of deformation. In addition, the sandblasting enhances the surface roughness. The corrosion resistance is improved by cold working, especially for the highly deformed specimen. However the follow-up sandblasting treatment reduces the corrosion resistance. In conclusion, the cold working is prominent to be used for improving the mechanical properties and corrosion resistance of AISI 316L stainless steel. Meanwhile, the sandblasting subjected to the cold worked steel is only useful for surface texturing instead of improving the mechanical properties and corrosion resistance.

Keywords

stainless steel / cold working / sandblasting / microhardness / tensile strength / corrosion resistance

Cite this article

Download citation ▾
Suyitno, Budi Arifvianto, Teguh Dwi Widodo, Muslim Mahardika, Punto Dewo, Urip Agus Salim. Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1093-1099 DOI:10.1007/s12613-012-0676-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R, 2009, 65, 39.

[2]

Abramson S., Alexander H., Best S., Bokros J.C., Brunski J.B., Colas A., et al. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., et al. Classes of materials in medicine. Biomaterials Science: an Introduction to Materials in Medicin, 2004, San Diego, Elsevier Academic Press, 67.

[3]

Triantafyllidis G.K., Kazantzis A.V., Karageorgiou K.T. Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence. Eng. Failure Anal., 2007, 14, 1346.

[4]

Holzach P., Matter P. The comparison of steel and titanium dynamic compression plates used for internal fixation of 256 fractures of the tibia. Injury, 1979, 10, 120.

[5]

Walczak J., Shahgaldi F., Heatley F. In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. Biomaterials, 1998, 19, 229.

[6]

Griza S., Zanon G., Silva E.P., Bertoni F., Reguly A., Strohaecker T.R. Design aspects involved in a cemented THA stem failure case. Eng. Failure Anal., 2009, 16, 512.

[7]

Allain J., Goutallier D., Voisin M.C., Lemouel S. Failure of a stainless-steel femoral head of a revision total hip arthroplasty performed after a fracture of a ceramic femoral head. J. Bone Joint Surg. Ser. A, 1998, 80, 1355.

[8]

Nevelos J.E., Ingham E., Doyle C., Nevelos A.B., Fisher J. Wear of HIPed and non-HIPed alumina-alumina hip joints under standard and severe simulator testing conditions. Biomaterials, 2001, 22, 2191.

[9]

Baleani M., Viceconti M., Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif. Organs, 2000, 24, 296.

[10]

Jasty M., Maloney W.J., Bragdon C.R., O’Connor D.O., Haire T., Harris W.H. The initiation of failure in cemented femoral components of hip arthroplasties. J. Bone Joint Surg. Ser. B, 1991, 73, 551.

[11]

Cruise R.B., Gardner L. Strength enhancements induced during cold forming of stainless steel sections. J. Constr. Steel. Res., 2008, 64, 1310.

[12]

Milad M., Zreiba N., Elhalouani F., Baradai C. The effect of cold work on structure and properties of AISI 304 stainless steel. J. Mater. Process. Technol., 2008, 203, 80.

[13]

Elias C.N., Oshida Y., Lima J.H.C., Muller C.A. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater., 2008, 1, 234.

[14]

Feighan J.E., Goldberg V.M., Davy D., Parr J.A., Stevenson S. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. J. Bone Joint Surg. Ser. A, 1995, 77, 1380.

[15]

Deligianni D.D., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis Y.F. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials, 2001, 22, 1241.

[16]

Multigner M., Frutos E., González-Carrasco J.L., Jiménez J.A., Marín P., Ibáñez J. Influence of the sandblasting on the subsurface microstructure of 316LVM stainless steel: Implications on the magnetic and mechanical properties. Mater. Sci. Eng. C, 2009, 29, 1357.

[17]

Roland T., Retraint D., Lu K., Lu J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater., 2006, 54, 1949.

[18]

Arifvianto B., Suyitno Mahardika M. Effect of sandblasting and surface mechanical attrition treatment on surface roughness, wettability, and microhardness distribution of AISI 316L. Key Eng. Mater., 2011, 462–463, 738.

[19]

Arifvianto B., Suyitno Mahardika M., Dewo P., Iswanto P.T., Salim U.A. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L. Mater. Chem. Phys., 2011, 125, 418.

[20]

Roland T., Retraint D., Lu K., Lu J. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater. Sci. Eng. A, 2007, 445–446, 281.

[21]

Azar V., Hashemi B., Yazdi M. R. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution. Surf. Coat. Technol., 2010, 204, 3546.

[22]

Chen X.H., Lu J., Lu L., Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scripta Mater., 2005, 52, 1039.

[23]

Jiang X.P., Wang X.Y., Li J.X., Li D.Y., Manc C.S., Shepard M.J., Zhai T. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mater. Sci. Eng. A, 2006, 429, 30.

[24]

Hao Y.W., Deng B., Zhong C., Jiang Y.M., Li J. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel. J. Iron Steel Res. Int., 2009, 16, 68.

[25]

Lee H.S., Kim D.S., Jun J.S., Pyoun Y.S., Shin K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corros. Sci, 2009, 51, 2826.

[26]

Hamdy A.S., El-Shenawy E., El-Bitar T. Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 35% NaCl. Int. J. Electrochem. Sci., 2006, 1, 171.

[27]

Aparicio C., Gil F.J., Fonseca C., Barbosa M., Planell J.A. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 2003, 24, 263.

[28]

Barbucci A., Delucchi M., Panizza M., Sacco M., Cerisola G. Electrochemical and corrosion behaviour of cold rolled AISI 301 in 1 M H2SO4. J. Alloys Compd., 2001, 317–318, 607.

[29]

de los Rios E.R., Walleya A., Milana M.T., Hammersley G. Fatigue crack initiation and propagation on shot peened surfaces in A316 stainless steel. Int. J. Fatigue, 1995, 17, 493.

[30]

Morais S., Sousa J.P., Fernandes M.H., Carvalho G.S., de Bruijn J.D., van Blitterswijk C.A. Effect of AISI 316L corrosion products in in vitro bone formation. Biomaterials, 1998, 19, 999.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/