A model for estimating the viscosity of blast furnace slags with optical basicity

Xiao-jun Hu , Zhong-shan Ren , Guo-hua Zhang , Li-jun Wang , Kuo-chih Chou

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1088 -1092.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (12) : 1088 -1092. DOI: 10.1007/s12613-012-0675-2
Article

A model for estimating the viscosity of blast furnace slags with optical basicity

Author information +
History +
PDF

Abstract

Viscosity is an important physical property of blast furnace slags and has a great influence on blast furnace operations. Because of time consumption and difficulties encountered during high temperature experimental measurement, viscosity data are also limited, so a reasonable and accurate estimation model is required to provide the data for controlling and optimizing the blast furnace process. In the present study a viscosity model was proposed for blast furnace slags. In the model the activation energy was calculated by the optical basicity corrected for cations required for the charge compensation of AlO4 5−, and the temperature dependence was described by the Weymann-Frenkel equation. The estimated viscosity values of the CaO-Al2O3-SiO2, CaO-Al2O3-SiO2-MgO, and CaO-Al2O3-SiO2-MgO-TiO2 systems fit well with experiment data, with the mean deviation less than 25%.

Keywords

blast furnace / slags / viscosity / optical basicity / charge compensation / activation energy

Cite this article

Download citation ▾
Xiao-jun Hu, Zhong-shan Ren, Guo-hua Zhang, Li-jun Wang, Kuo-chih Chou. A model for estimating the viscosity of blast furnace slags with optical basicity. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(12): 1088-1092 DOI:10.1007/s12613-012-0675-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Riboud P.V., Roux L.D.L., Gaye H. Improvement of continuous casting powders. Fachber. Hüettenprax. Metallweiterverarb., 1981, 19(10): 859.

[2]

Urbain G. Viscosity estimation of slags. Steel Res., 1987, 58(3): 111.

[3]

Sichen D., Bygdén J., Seetharaman S. A model for estimation of viscosities of complex metallic and ionic melts. Metall. Mater. Trans. B, 1994, 25, 519.

[4]

Zhang L., Jahanshahi S. Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO, and MnO. Metall. Mater. Trans. B, 1998, 29, 177.

[5]

Kondratiev A., Jak E. Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-’FeO’-SiO2 system). Fuel, 2001, 80, 1989.

[6]

Iida T., Sakal H., Kita Y., Shigeno K. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int., 2000, 40(Suppl.): S110.

[7]

Mills K.C., Sridhar S. Viscosities of ironmaking and steelmaking slags. Ironmaking Steelmaking, 1999, 26(4): 262.

[8]

Ray H.S., Pal S. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmaking Steelmaking, 2004, 31(2): 125.

[9]

Miyabayashi Y., Nakamoto M., Tanaka T., Yamamoto T. A model for estimating the viscosity of molten Aluminosilicate containing calcium fluoride. ISIJ Int., 2009, 49(3): 343.

[10]

Shu Q.F. A viscosity estimation model for molten slags in CaO-Al2O3-MgO-SiO2 system. Steel Res. Int., 2009, 80(2): 107.

[11]

Toplis M.J., Dingwell D.B. Shear viscosities of CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 liquids: implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts. Geochim. Cosmochim. Acta, 2004, 68, 5169.

[12]

Duffy J.A., Ingram M.D. Optical basicity-IV: influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J. Inorg. Nucl. Chem., 1975, 37, 1203.

[13]

Zhang G.H., Chou K.C., Li F.S. A new model for evaluating the electrical conductivity of nonferrous slag. Int. J. Miner. Metall. Mater., 2009, 16(5): 500.

[14]

J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity Studies of System CaO-MgO-Al 2O3-SiO2: III. 35, 45, and 50% SiO 2, Illinois State Geological Survey Report of Investigations No.163, 1953

[15]

Kozakevitch P. Viscosite et elements structuraux des aluminosilicates fondus: laitiers CaO-Al2O3-SiO2 entre 1600 et 2100 °C. Rev. Metall., 1960, 57, 149.

[16]

Mills K.C., Chapman L., Fox A.B., Sridhar S. ’Round robin’ project on the estimation of slag viscosities. Scand. J. Metall., 2001, 30, 396.

[17]

Saito N., Hori N., Nakashima K., Mori K. Viscosity of blast furnace type slags. Metall. Mater. Trans. B, 2003, 34, 509.

[18]

Shankar A., Görnerup M., Lahiri A.K., Seetharaman S. Experimental investigation of viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags. Metall. Mater. Trans. B, 2007, 38, 911.

[19]

Stebbins J.F., Xu Z. NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature, 1997, 390, 60.

[20]

Eisenhüttenleute V.D. Slag Atlas, 1995, Germany, Verlag Sthaleisen GmbH, 6.

[21]

Nakamura T., Morinaga K., Yanagase T. The viscosity of the molten silicate containing TiO2. J. Jpn. Inst. Met., 1977, 41, 1300.

[22]

Yasukouchi T., Nakashima K., Mori K. Viscosity of ternary CaO-SiO2-Mx(F,O)y and CaO-Al2O3-Fe2O3 melts. Tetsu-to-Hagane, 1999, 85(8): 571.

[23]

A. Ohno and H.U. Ross, Optimum slag composition for the blast-furnace smelting of titaniferous ores, Can. Metall. Q., 1963, No.3, p.259.

[24]

Sun K.H. Fundamental condition of glass formation. J. Am. Ceram. Soc., 1947, 30(9): 227.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/