Effect of stearic acid on the morphological and structural evolution of mechanically milled Nb-based powder

De-zhi Zhang , Xuan-hui Qu , Ming-li Qin , Lin Zhang , Xin Lu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1052 -1057.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1052 -1057. DOI: 10.1007/s12613-012-0669-0
Article

Effect of stearic acid on the morphological and structural evolution of mechanically milled Nb-based powder

Author information +
History +
PDF

Abstract

Nb-based powder was fabricated via mechanical grinding. The influence of stearic acid on the grinding process was studied. The structural evolution and morphological evolution of the milled powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. It is indicated that an appropriate amount of stearic acid accelerates the particle refinement process and favors the production of superfine Nb-based particles with good dispersivity and high activity. However, an inappropriate amount of stearic acid has an adverse effect on the refinement process.

Keywords

niobium alloys / powders / stearic acid / grinding / morphology / microstructural evolution

Cite this article

Download citation ▾
De-zhi Zhang, Xuan-hui Qu, Ming-li Qin, Lin Zhang, Xin Lu. Effect of stearic acid on the morphological and structural evolution of mechanically milled Nb-based powder. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 1052-1057 DOI:10.1007/s12613-012-0669-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tanaka R. Research and development of ultra-high temperature materials in Japan. Mater. High Temp., 2000, 17(4): 457.

[2]

Tan Y., Ma C.L., Kasama A., Tanaka R., Mishima Y., Hanada S., Yang J.M. Effect of alloy composition on microstructure and high temperature properties of Nb-Zr-C ternary alloys. Mater. Sci. Eng. A, 2003, 341(1–2): 282.

[3]

Aggarwal G., Smid I., Park S.J., German R.M. Development of niobium powder injection molding. Part II: Debinding and sintering. Int. J. Refract. Met. Hard Mater., 2007, 25(3): 226.

[4]

Sandim H.R.Z., Padilha A.F. On sinterability of commercial purity of niobium. Key Eng. Mater., 2001, 189-191, 296.

[5]

Malewar R., Kumar K.S., Murty B.S., Sarma B., Pabi S.K. On sinterability of nanostructured W produced by high-energy ball milling. J. Mater. Res., 2007, 22(5): 1200.

[6]

Bhattacharya A.K., Arzt E. Diffusive reaction during mechanical alloying of intermetallics. Scripta Metall. Mater., 1992, 27(5): 635.

[7]

Toth L.E. Transition Metal Carbides and Nitrides, 1971, New York, Academic Press, 86.

[8]

Chen C.L., Dong Y.M. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys. Mater. Sci. Eng. A, 2011, 528(29–30): 8374.

[9]

Ramezanalizadeh H., Heshmati-Manesh S. Preparation of MoSi2-Al2O3 nano-composite via MASHS route. Int. J. Refract. Met. Hard Mater., 2012, 31, 210.

[10]

Shaw L., Zawrah M., Villegas J., Luo H., Miracle D. Effects of process-control agents on mechanical alloying of nanostructured aluminum alloys. Metall. Mater. Trans. A, 2003, 34(1): 159.

[11]

Maweja K., Phasha M., van der Berg N. Microstructure and crystal structure of an equimolar Mg-Ti alloy processed by Simoloyer high-energy ball mill. Powder Technol., 2010, 199(3): 256.

[12]

Zhang D.Z., Qin M.L., Rafi-Ud-Din Zhang L., Qu X.H. Fabrication and characterization of nanocrystalline Nb-W-Mo-Zr alloy powder by ball milling. Int. J. Refract. Met. Hard Mater., 2012, 32, 45.

[13]

Opoczky L. Fine grinding and agglomeration of silicates. Powder Technol., 1977, 17(1): 1.

[14]

Fadda S., Cincotti A., Concas A., Pisu M., Cao G. Modelling breakage and reagglomeration during fine dry grinding in ball milling devices. Powder Technol., 2009, 194(3): 207.

[15]

Kleiner S., Bertocco F., Khalid F.A., Beffort O. Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al-TiO2 system. Mater. Chem. Phys., 2005, 89(2-3): 362.

[16]

Bailon-Poujol I., Bailon J.P., L’Espérance G. Ball-mill grinding kinetics of master alloys for steel powder metallurgy applications. Powder Technol., 2011, 210(3): 267.

[17]

Q. Li, G.F. Zeng, and S.Q. Xi, Nano particles, Chemistry, (1995), No.6, p.29.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/