Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation

Qiang Luo , Xin-wei Li , Qi-zhou Cai , Qing-song Yan , Zhen-hua Pan

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1045 -1051.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1045 -1051. DOI: 10.1007/s12613-012-0668-1
Article

Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation

Author information +
History +
PDF

Abstract

V2O5/TiO2 composite films were prepared on pure titanium substrates via micro-arc oxidation (MAO) in electrolytes consisting of NaVO3. Their morphology and elements were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Phase composition and valence states of species in the films were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were also employed to evaluate the photophysical property of the films. The V2O5/TiO2 composite films show a sheet-like morphology. Not only V2O5 phase appears in the films when the NaVO3 concentration of the electrolyte is higher than 6.10 g/L and is loaded at the surface of anatase, but also V4+ is incorporated into the crystal lattice of anatase. In comparison with pure TiO2 films the V2O5/TiO2 composite films exhibit significantly narrow band gap energy. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the narrowest band gap energy, which is approximately 1.89 eV. The V2O5/TiO2 composite films also have the significantly enhanced visible light photocatalytic activity. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the best photocatalytic activity and about 93% of rhodamine is degraded after 14 h visible light radiation.

Keywords

composite films / titanium dioxide / vanadium pentoxide / micro-arc oxidation / sodium metavanadate / rhodamine / photocatalysis

Cite this article

Download citation ▾
Qiang Luo, Xin-wei Li, Qi-zhou Cai, Qing-song Yan, Zhen-hua Pan. Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 1045-1051 DOI:10.1007/s12613-012-0668-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen H.W., Ku Y., Kuo Y.L. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis. Water Res., 2007, 41(10): 2069.

[2]

Chu W., Choy W.K., So T.Y. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. J. Hazard. Mater., 2007, 141(1): 86.

[3]

Kosowska B., Mozia S., Morawski A.W., Grzmil B., Janus M., Kalucki K. The preparation of TiO2-nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Sol. Cells, 2005, 88(3): 269.

[4]

Zlamal M., Macak J.M., Schmuki P., Krýsa J. Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem. Commun., 2007, 9(12): 2822.

[5]

Yang H.M., Shi R.R., Zhang K., Hu Y.H., Tang A.D., Li X.W. Synthesis of WO3/TiO2 nanocomposites via sol-gel method. J. Alloys Compd., 2005, 398(1–2): 200.

[6]

Zhang X.W., Lei L.C. Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition. Appl. Surf. Sci., 2008, 254(8): 2406.

[7]

Franco A., Neves M.C., Carrott M.M.L.R., Mendonca M.H., Pereira M.I., Monteiro O.C. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J. Hazard. Mater., 2009, 161(1): 545.

[8]

Lu L.H., Shen D.J., Zhang J.W., Song J., Li L. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate. Appl. Surf. Sci., 2011, 257(9): 4144.

[9]

Wang P., Li J.P., Guo Y.C., Yang Z. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys. J. Rare Earths, 2010, 28(5): 798.

[10]

Kim M.S., Ryu J.J., Sung Y.M. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem. Commun., 2007, 9(8): 1886.

[11]

Jin F.Y., Chu P.K., Wang K., Zhao J., Huang A.P., Tong H.H. Thermal stability of titania films prepared on titanium by micro-arc oxidation. Mater. Sci. Eng. A, 2008, 476(1–2): 78.

[12]

Kamegawa T., Sonoda J., Sugimura K., Mori K., Yamashita H. Degradation of isobutanol diluted in water over visible light sensitive vanadium doped TiO2 photocatalyst. J. Alloys Compd., 2009, 486(1–2): 685.

[13]

Zhang Z.Y., Shao C.L., Zhang L.N., Li X.H., Liu Y.C. Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci., 2010, 351(1): 57.

[14]

Bayati M.R., Moshfegh A.Z., Golestani-Fard F. Synthesis of narrow band gap (V2O5)x-(TiO2)1−x nano-structured layers via micro arc oxidation. Appl. Surf. Sci., 2010, 256(9): 2903.

[15]

Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol., 1999, 122(2–3): 73.

[16]

Snizhko L.O., Yerokhin A.L., Pilkington A., Gurevina N.L., Misnyankin D.O., Leyland A., Matthews A. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim. Acta, 2004, 49(13): 2085.

[17]

Zhuravlyova E., Iglesias-Rubianes L., Pakes A., Skeldon P., Thompson G. E., Zhou X., Quance T., Graham M.J., Habazaki H., Shimizu K. Oxygen evolution within barrier oxide films. Corros. Sci., 2002, 44(9): 2153.

[18]

Qiu T., Wu X.L., Jin F.Y., Huang A.P., Chu P.K. Self-assembled growth of MgO nanosheet arrays via a micro-arc oxidation technique. Appl. Surf. Sci., 2007, 253(8): 3987.

[19]

Liu B.S., Wang X.L., Cai G.F., Wen L.P., Song Y.B., Zhao X.J. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. J. Hazard. Mater., 2009, 169(1–3): 1112.

[20]

Yuan N.Y., Li J.H., Lin C.L. Valence reduction process from sol-gel V2O5 to VO2 thin films. Appl. Surf. Sci., 2002, 191(1–4): 176.

[21]

Gu D.E., Yang B.C., Hu Y.D. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catal. Commun., 2008, 9(6): 1472.

[22]

Yang X., Ma F.Y., Li K.X., Guo Y.N., Hu J.L., Li W., Huo M.X., Guo Y.H. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J. Hazard. Mater., 2010, 175(1–3): 429.

[23]

Gordillo-Delgado F., Mendoza-Álvarez J.G., Zelaya-Ángel O. Actividad fotocatalítica con luz visible de películas de TiO2 crecidas por r.f. sputtering reactivo. Rev. Colomb. Fis., 2006, 38(1): 129.

[24]

Kittel C. Introduction to Solid State Physics, 1970 4th ed. New York, John Wiley & Sons, Inc.

[25]

Essick J.M., Mather R.T. Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am. J. Phys., 1993, 61(7): 646.

[26]

Mártil I., González Díaz G. Undergraduate laboratory experiment: Measurement of the complex refractive index and the band gap of a thin film semiconductor. Am. J. Phys., 1992, 60(1): 83.

[27]

Sconza A., Torzo G. Spectroscopic measurement of the semiconductor energy gap. Am. J. Phys., 1994, 62(8): 732.

[28]

Murphy A.B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells, 2007, 91(14): 1326.

[29]

Barajas-Ledesma E., García-Benjume M.L., Espitia-Cabrera I., Ortiz-Gutiérrez M., Espinoza-Beltrán F.J., Mostaghimi J., Contreras-García M.E. Determination of the band gap of TiO2-Al2O3 films as a function of processing parameters. Mater. Sci. Eng. B, 2010, 174(1–3): 71.

[30]

Nagaveni K., Hegde M.S., Madras G. Structure and photocatalytic activity of Ti1−xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J. Phys. Chem. B, 2004, 108(52): 20204.

[31]

Tian B.Z., Li C.Z., Gu F., Jiang H.B., Hu Y.J., Zhang J.L. Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J., 2009, 151(1-3): 220.

[32]

Choi W., Termin A., Hoffmann M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669.

[33]

Liu J.W., Fu Y.C., Sun Q., Shen J.Y. TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane. Microporous Mesoporous Mater., 2008, 116(1–3): 614.

[34]

Miyauchi M., Nakajima A., Watanabe T., Hashimoto K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater., 2002, 14(6): 2812.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/