Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy

Yong Wang , Ze-hong Wu , Hong Zhou , Zhi-dong Liao , Heng-fei Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1040 -1044.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1040 -1044. DOI: 10.1007/s12613-012-0667-2
Article

Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy

Author information +
History +
PDF

Abstract

Magnesium matrix composites (MMC) reinforced with 5wt% tricalcium phosphate (TCP) particles were prepared by powder metallurgy. Pure magnesium (CP-Mg) was fabricated by the same procedure for comparison. Scanning electron microscopy and energy- dispersive X-ray spectroscopy analyses revealed that TCP particles were distributed homogeneously in the MMC. In order to investigate the corrosion properties, MMC samples were immersed in a simulated body fluid (SBF) at 310±0.5 K for 72 h. The mass loss of the samples in SBF and the pH values of the SBF were evaluated. Moreover, electrochemical measurements were conducted in the SBF. It was shown that the corrosion rate of the MMC decreased with the addition of TCP compared with CP-Mg. Hydroxyapatite was formed on the surface of MMC samples after immersion in the SBF for 72 h but not on the surface of CP-Mg.

Keywords

metallic matrix composites / powder technology / corrosion / hydroxyapatite / magnesium

Cite this article

Download citation ▾
Yong Wang, Ze-hong Wu, Hong Zhou, Zhi-dong Liao, Heng-fei Zhang. Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 1040-1044 DOI:10.1007/s12613-012-0667-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728.

[2]

Heublein B., Rohde R., Kaese V., Niemeyer M., Hartung W., Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?. Heart, 2003, 89(6): 651.

[3]

Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci., 2008, 12(5–6): 63.

[4]

Zeng R.C., Dietzel W., Witte F., Hort N., Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv. Eng. Mater., 2008, 10(8): B3.

[5]

Witte F., Feyerabend F., Maier P., Fisher J., Störmer M., Blawert C., Dietzel W., Hort N. Biodegradable magnesium-hydroxyapatite metal matrix composite. Biomaterials, 2007, 28(13): 2163.

[6]

Klein C.P.A.T., Driessen A.A., de Groot K., van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater. Res., 1983, 17(5): 769.

[7]

Kim H.M., Miyaji F., Kokubo T., Nakamura T. Effect of heat treatment on apatite-forming ability of Ti induced by alkali treatment. J. Mater. Sci. Mater. Med., 1997, 8(6): 341.

[8]

Song G., Atrens A. Understanding magnesium corrosion: a framework for improved alloy performance. Adv. Eng. Mater., 2003, 5(12): 837.

[9]

Ng W.F., Chiu K.Y., Cheng F.T. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater. Sci. Eng. C, 2010, 30(6): 898.

[10]

Wang Y., Wei M., Gao J.C., Hu J.Z., Zhang Y. Corrosion process of pure magnesium in simulated body fluid. Mater. Lett., 2008, 62(14): 2181.

[11]

Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2006, 27(15): 2907.

[12]

Vereecke G., Lemaître J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O. J. Cryst. Growth., 1990, 104(4): 820.

[13]

Geng F., Tan L.L., Jin X.X., Yang J.Y., Yang K. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium. J. Mater. Sci. Mater. Med., 2009, 20(5): 1149.

[14]

Abbona F., Baronnet A. A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J. Cryst. Growth, 1996, 165(1–2): 98.

[15]

Wang Y., Wei M., Gao J.C. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Mater. Sci. Eng. C, 2009, 29(4): 1311.

[16]

Yang J.X., Cui F.Z., Yin Q.S., Zhang Y., Zhang T., Wang X.M. Characterization and degradation study of calcium phosphate coating on magnesium alloy bone implant in vitro. IEEE Trans. Plasma Sci., 2009, 37(7): 1161.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/