Potential red-emitting phosphor GdNbO4:Eu3+,Bi3+ for near-UV white light emitting diodes

Ding-fei Zhang , An Tang , Liu Yang , Zeng-tao Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1036 -1039.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1036 -1039. DOI: 10.1007/s12613-012-0666-3
Article

Potential red-emitting phosphor GdNbO4:Eu3+,Bi3+ for near-UV white light emitting diodes

Author information +
History +
PDF

Abstract

A red-emitting phosphor GdNbO4:Eu3+,Bi3+ was prepared by a high temperature solid-state reaction technique. The phosphor was characterized by X-ray diffraction (XRD), particle size analyzer and fluorescence spectrometer. The single phase of GdNbO4:Eu3+,Bi3+ was obtained at 1150°C and the average particle diameter was about 2.30 μm. Excitation and emission spectra reveal that the phosphor can be efficiently excited by ultraviolet (UV) light (394 nm) and emit the strong red light of 612 nm due to the Eu3+ transition of 5D07F2. The optimum content of Eu3+ doped in the phosphor GdNbO4:Eu3+ is 20mol%. The phosphor Gd0.80NbO4:0.20Eu3+,0.03Bi3+ shows much stronger photoluminescence intensity and better chromaticity coordinates (x=0.642, 0.352) than GdNbO4:Eu3+. It is confirmed that Gd0.80NbO4:0.20Eu3+,0.03Bi3+ is a potential candidate for near-UV chip-based white light emitting diodes.

Keywords

phosphors / solid-state reactions / gadolinium niobate / light emitting diodes

Cite this article

Download citation ▾
Ding-fei Zhang, An Tang, Liu Yang, Zeng-tao Zhu. Potential red-emitting phosphor GdNbO4:Eu3+,Bi3+ for near-UV white light emitting diodes. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 1036-1039 DOI:10.1007/s12613-012-0666-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Narukawa Y., Sano M., Sakamoto T., Yamada T., Mukai T. Successful fabrication of white light emitting diodes by using extremely high external quantum efficiency blue chips. Phys. Status Solidi A, 2008, 205(5): 1081.

[2]

Mueller A.H., Petruska M.A., Achermann M., Werder D.J., Akhadov E.A., Koleske D.D., Hoffbauer M.A., Klimov V.I. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett., 2005, 5(6): 1039.

[3]

Cao F.B., Tian Y.W., Chen Y.J., Xiao L.J., Wu Q. Novel red phosphor for solid-state lighting: Ca0.54Sr0.34−1.5xEu0.08-Lax(MoO4)y(WO4)1−y. J. Alloys Compd., 2009, 475(1–2): 387.

[4]

Guo Y., Sun M., Guo W.M., Ren F.Q., Chen D.H. Luminescent properties of Eu3+ activated tungstate based novel red-emitting phosphors. Opt. Laser Technol., 2010, 42(8): 1328.

[5]

Zhang Z.H., Huang Q., Zhao X., Huang Z.L. Enhanced red emission of CaMoO4:Eu3+ phosphor by structural adjustment for white light-emitting diodes application. Phys. Status Solidi A, 2009, 206(12): 2839.

[6]

Yi L.H., He X.P., Zhou L.Y., Gong F.Z., Wang R.F., Sun J.H. A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application. J. Lumin., 2010, 130(6): 1113.

[7]

Haque Md.M., Kim D.K. Luminescent properties of Eu3+ activated MLa2(MoO4)4 based (M=Ba, Sr and Ca) novel red-emitting phosphors. Mater. Lett., 2009, 63(9–10): 793.

[8]

Sun X.Y., Zhang J.H., Zhang X., Lu S.Z., Wang X.J. A white light phosphor suitable for near ultraviolet excitation. J. Lumin., 2007, 122–123(1–2): 955.

[9]

Yang Y.L., Li X.M., Feng W.L., Li W.L., Tao C.Y. Co-precipitation synthesis and photoluminescence properties of (Ca1−xy,Lny)MoO4:xEu3+ (Ln = Y, Gd) red phosphors. J. Alloys Compd., 2010, 505(1): 239.

[10]

Wang X.X., Wang J., Shi J.X., Su Q., Gong M.L. Intense red-emitting phosphors for LED solid-state lighting. Mater. Res. Bull., 2007, 42(9): 1669.

[11]

Xiao X.Z., Yan B. Photoluminescence of Y0.6Gd0.4NbO4: Eu3+/Tb3+ micrometric phosphors derived from hybrid precursors. Mater. Lett., 2007, 61(8–9): 1649.

[12]

Huang J.L., Zhou L.Y., Liang Z.P., Gong F.Z., Han J.P., Wang R.F. Promising red phosphors LaNbO4:Eu3+,Bi3+ for LED solid-state lighting application. J. Rare Earths, 2010, 28(3): 356.

[13]

Xiao X.Z., Yan B. Synthesis and luminescent properties of novel RENbO4:Ln3+ (RE=Y, Gd, Lu; Ln=Eu, Tb) micro-crystalline phosphors. J. Non Cryst. Solids, 2005, 351(46—48): 3634.

[14]

Rao R.P. Preparation and characterization of fine-grain yttrium- based phosphors by sol-gel process. J. Electrochem. Soc., 1996, 143(1): 189.

[15]

Guo C.F., Yang H.K., Fu Z.L., Li L., Choi B.C., Jeong J.H. A potential red-emitting phosphor BaGd2(MoO4)4: Eu3+ for near-UV white LED. J. Am. Ceram. Soc., 2009, 92(8): 1713.

[16]

Yi L.H., Zhou L.Y., Wang Z.L., Sun J.H., Gong F.Z., Wan W.P., Wang W. KGd(MoO4)2:Eu3+ as a promising red phosphor for light-emitting diode application. Curr. Appl. Phys., 2010, 10(1): 208.

[17]

Zhang Y.M., Li Y.H., Li P., Hong G.Y., Yu Y.N. Preparation and upconversion luminescence of YVO4:Er3+, Yb3+. Int. J. Miner. Metall. Mater., 2010, 17(2): 225.

[18]

Wang Z.L., Liang H.B., Wang Q., Chen M.H., Gong M.L., Su Q. Novel red phosphor of Eu3+, Bi3+ coactivated double tungstates. Phys. Status Solidi A, 2009, 206(7): 1589.

[19]

Park W.J., Jung M.K., Yoon D.H. Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation. Sens. Actuators B, 2007, 126(1): 324.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/