Microstructural evolution of a recycled aluminum alloy deformed by equal channel angular pressing process

Thabet Makhlouf , Atef Rebhi , Jean-Philippe Couzinié , Yannick Champion , Nabil Njah

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1016 -1022.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 1016 -1022. DOI: 10.1007/s12613-012-0663-6
Article

Microstructural evolution of a recycled aluminum alloy deformed by equal channel angular pressing process

Author information +
History +
PDF

Abstract

The microstructural evolution of a recycled aluminum alloy after equal channel angular pressing (ECAP) up to four passes was investigated using X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Microhardness tests were performed to determine the associated changes in mechanical properties. An ultrafine-grained material has been obtained with a microstructure showing a mixture of highly strained crystallites. A high density of dislocations was achieved as a result of severe plastic deformation (SPD) through the die. Changes in mechanical behavior are also revealed after ECAP due to strain hardening. Thermal analysis and TEM micrographs obtained after annealing indicate the succession of the recovery, recrystallization, and grain growth phenomena. Moreover, the energy stored during ECAP may be related to the dislocation density introduced by SPD. We finally emphasize the role played by the precipitates in this alloy.

Keywords

aluminum alloys / equal channel angular pressing (ECAP) / microstructural evolution / precipitates

Cite this article

Download citation ▾
Thabet Makhlouf, Atef Rebhi, Jean-Philippe Couzinié, Yannick Champion, Nabil Njah. Microstructural evolution of a recycled aluminum alloy deformed by equal channel angular pressing process. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 1016-1022 DOI:10.1007/s12613-012-0663-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Valiev R.Z., Korznikov A.V., Mulyuko R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A, 1993, 168, 141

[2]

Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A, 2001, 299, 59

[3]

Horita Z., Fujinami T., Nemoto M., Langdon T.G. Improvement of mechanical properties for Al alloys using equal-channel angular pressing. J. Mater. Process. Technol., 2001, 117, 288

[4]

Segal V.M. Materials processing by simple shear. Mater. Sci. Eng. A, 1995, 197, 157

[5]

Valiev R.Z. Structure and mechanical properties of ultrafine-grained metals. Mater. Sci. Eng. A, 1997, 234–236, 59.

[6]

Langdon T.G., Furukawa M., Nemoto M., Horita Z. Using equal-channel angular pressing for refining grain size. JOM, 2000, 52, 30

[7]

Segal V.M. Equal channel angular extrusion: from macromechanics to structure formation. Mater. Sci. Eng. A, 1999, 271, 322

[8]

Zhao Y.H., Liao X.Z., Jin Z., Valiev R.Z., Zhu Y.T. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta. Mater., 2004, 52, 4589

[9]

Lee J.C., Seok H.K., Suh J.Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta. Mater., 2002, 50, 4005

[10]

Nagarajan D., Chakkingal U., Venugopal P. Influence of cold extrusion on the microstructure and mechanical properties of an aluminium alloy previously subjected to equal channel angular pressing. J. Mater. Process. Technol., 2007, 182, 363

[11]

Miyamoto H., Ota K., Mimaki T. Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing. Scripta Mater., 2006, 54, 1721

[12]

Chang C.P., Sun P.L., Kao P.W. Deformation induced grain boundaries in commercially pure aluminium. Acta Mater., 2000, 48, 3377

[13]

Vinogradov A., Ishida T., Kitagawa K., Kopylov V.I. Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu-Cr alloy produced by equal-channel angular pressing. Acta Mater., 2005, 53, 2181

[14]

Urrutia I.G., Muňoz-Morris M.A., Morris D.G. The effect of coarse second-phase particles and fine precipitates on microstructure refinement and mechanical properties of severely deformed Al alloy. Mater. Sci. Eng. A, 2005, 394, 399

[15]

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45, 103

[16]

Dalla Torre F., Lapovok R., Sandlin J., Thomson P.F., Davies C.H.J., Pereloma E.V. Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater., 2004, 52, 4819

[17]

Langford J.I. A rapid method for analysing the breaths of diffraction and spectral lines using the Voigt function. J. Appl. Crystallogr., 1978, 11, 10

[18]

Langford J.I. Snyder R.L., Fiala J., Bunge H.J. Defect and Microstructure Analysis by Diffraction. IUCr Monographs on Crystallography 10, 1999, New York, International Union of Crystallography-Oxford Science Publications

[19]

Ungár T., Borbély A. The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis. Appl. Phys. Lett., 1996, 69, 3173

[20]

Dragomir I.C., Ungàr T. Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Crysallogrt., 2002, 35, 556

[21]

Schafler E., Steiner G., Korznikova E., Kerber M., Zehetbauer M.J. Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry. Mater. Sci. Eng. A, 2005, 410–411, 169.

[22]

Kim W.J., Wang J.Y. Microstructure of the post-ECAP aging processed 6061 Al alloys. Mater. Sci. Eng. A, 2007, 464, 23

[23]

Iwahashi Y., Wang J., Horita Z., Nemoto M., Langdon T.G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater., 1996, 35, 143

[24]

Rebhi A., Makhlouf T., Njah N., Champion Y., Couzinié J.P. Characterization of aluminum processed by equal channel angular extrusion: effect of processing route. Mater. Charact., 2009, 60, 1489

[25]

Makhlouf T., Rebhi A., Njah N. Microstructure and mechanical property evolution of 99.1% recycled aluminum during Equal Channel Angular Extrusion. IOP Conf. Ser. Mater. Sci. Eng., 2010, 13, 012017.

[26]

Azàroff L.V., Buerger M.J. The Powder Method in X-Ray Crystallography, 1958, New York, McGrow-Hill

[27]

Gubicza J., Nam N.H., Balogh L., Hellmig R.J., Stolyarov V.V., Estrin Y., Ungár T. Microstructure of severely deformed metals determined by X-ray peak profile analysis. J. Alloys Compd., 2004, 378, 248

[28]

Gubicza J., Chinh N.Q., Krállics G.y., Schiller I., Ungár T. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation. Curr. App. Phys., 2006, 6, 194

[29]

Ungár T., Ott S., Sanders P.G., Borbély A., Weertman J.R. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater., 1998, 46, 3693

[30]

Zhang K., Alexandrov I.V., Lu K. The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing. Nanostruct. Mater., 1997, 9, 347

[31]

Li L., Ungár T., Wang Y.D., Fan G.J., Yang Y.L., Jia N., Ren Y., Tichy G., Lendvai J., Choo H., Liaw P.K. Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni-Fe alloy. Scripta Mater., 2009, 60, 317

[32]

Beaver M.B., Holt D.L., Titchener A.L. The stored energy of cold work. Prog. Mater. Sci., 1973, 17, 5

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/