Preparation of Cr2O3 precursors by hydrothermal reduction in the abundant Na2CO3 and Na2CrO4 solution

Guang-ye Wei , Jing-kui Qu , Yu-dong Zheng , Tao Qi , Qiang Guo

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 978 -985.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (11) : 978 -985. DOI: 10.1007/s12613-012-0658-3
Article

Preparation of Cr2O3 precursors by hydrothermal reduction in the abundant Na2CO3 and Na2CrO4 solution

Author information +
History +
PDF

Abstract

Precursors of chromium oxide (p-Cr2O3) were prepared by reducing hexavalent chromium in the presence of sodium carbonate solution under hydrothermal conditions. Methanal was used as the reductant, and carbon dioxide was the acidulating agent. The influences of reaction temperature, initial pressure of carbon dioxide, isothermal time and methanal coefficient on Cr(VI) reduction were investigated. Experimental results showed that Cr(VI) was reduced to Cr(III) with a yield of 99%. Chemical titration, thermogravimetry (TG), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were used to characterize the p-Cr2O3 and Cr2O3. The series of p-Cr2O3 were found to be multiphase even if they presented different colors, from gray green to lavender. After these p-Cr2O3 samples were calcined, the product of rhombohedral Cr2O3 with a purity of 99.5wt% was obtained.

Keywords

chromium oxide / hydrothermal reduction / sodium carbonate / methanal / laterite ores

Cite this article

Download citation ▾
Guang-ye Wei, Jing-kui Qu, Yu-dong Zheng, Tao Qi, Qiang Guo. Preparation of Cr2O3 precursors by hydrothermal reduction in the abundant Na2CO3 and Na2CrO4 solution. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(11): 978-985 DOI:10.1007/s12613-012-0658-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Georgiou D., Papangelakis V.G. Behaviour of cobalt during sulphuric acid pressure leaching of a limonitic laterite. Hydrometallurgy, 2009, 100(1–2): 35

[2]

Zuniga M., Parada F., Asselin E. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104(2): 260

[3]

J.K. Qu, T. Qi, S.T. Dong, P. Zhao, L.N. Wang, C.Y. Wang, Q. Guo, G.Y. Wei, L. Li, and J.L. Pang, A Clean Production Technology for Low-Grade Nickeliferous Laterite Ores by Alkali-Roasting Method Using Sodium Carbonate, Chinese Patent, Appl. 0910082370.3, 2009.

[4]

Guo Q., Qu J.K., Qi T., Wei G.Y., Han B.B. Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate. Miner. Eng., 2011, 24(8): 825

[5]

Li P., Xu H.B., Zhang Y., Li Z.H., Zheng S.L., Bai Y.L. The effects of Al and Ba on the colour performance of chromic oxide green pigment. Dyes Pigm., 2009, 80(3): 287

[6]

Srivastava M., Balaraju J.N., Ravishankar B., Rajam K.S. Improvement in the properties of nickel by nano-Cr2O3 incorporation. Surf. Coat. Technol., 2010, 205(1): 66

[7]

Shee D., Sayari A. Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Appl. Catal. A, 2010, 389(1–2): 155.

[8]

Nakayama O., Ikenaga N., Miyake T., Yagasaki E., Suzuki T. Production of synthesis gas from methane using lattice oxygen of NiO-Cr2O3-MgO complex oxide. Ind. Eng. Chem. Res., 2010, 49(2): 526

[9]

Halil Hüseyin G., Şaban P., Ahmet Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 2010, 181(31–32): 1437.

[10]

W. Rambold, H. Heine, B. Raederscheidt, and G. Trenczek, Production of Low Sulphuric Chromium (III) Oxide, United States Patent, Appl.968588, 1980.

[11]

Zhang X.J., Yuan W. Preparation of Cr2O3 fine powder by solid-phase reaction. J. Beijing Univ. Chem. Technol., 2002, 29(1): 71.

[12]

Balachandran U., Siegel R.W., Liao Y.X., Askew T.R. Synthesis, sintering, and magnetic properties of nanophase Cr2O3. Nanostruct. Mater., 1995, 5(5): 505

[13]

Vollath D., Szabó D.V., Willis J.O. Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma. Mater. Lett., 1996, 29(4–6): 271

[14]

Zhong Z.C., Cheng R.H., Bosley J., Dowben P.A., Sellmyer D.J. Fabrication of chromium oxide nanoparticles by laser-induced deposition from solution. Appl. Surf. Sci., 2001, 181(3–4): 196

[15]

Li L., Yan Z.F., Lu G.Q., Zhu Z.H. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction. J. Phys. Chem. B, 2006, 110(1): 178

[16]

Xu H.T., Lou T.J., Li Y.D. Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres. Inorg. Chem. Commun., 2004, 7(5): 666

[17]

Pei Z.Z., Xu H.B., Zhang Y. Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction. J. Alloys Compd., 2009, 468(1–2): L5

[18]

Pei Z.Z., Zhang Y. A novel method to prepare Cr2O3 nanoparticles. Mater. Lett., 2008, 62(3): 504

[19]

Yao Z.M., Li Z.H., Zhang Y. Experiments on reducing potassium chromate and potassium dichromate to chromic oxide hydrate under hydrothermal conditions. Chin. J. Process Eng., 2003, 3(1): 62.

[20]

Zhang P., Cao H.B., Xu H.B., Zhang Y. Preparation of ultrafine chromia particles by hydrothermal reduction and size control. Chin. J. Process Eng., 2006, 7(1): 95.

[21]

Rai D., Moore D.A., Hess N.J., Rosso K.M., Rao L.F., Heald S.M. Chromium(III) hydroxide solubility in the aqueous K+-H+-OH-CO2-HCO3 -CO3 2−-H2O system: a thermodynamic model. J. Solution Chem., 2007, 36(10): 1261

[22]

Kamps P., Meyer E., Rumpf B., Maurer G. Solubility of CO2 in aqueous solutions of KCl and in aqueous solutions of K2CO3. J. Chem. Eng. Data, 2007, 52(3): 817

[23]

Chrysochoou M., Ting A. A kinetic study of Cr(VI) reduction by calcium polysulfide. Sci. Total Environ., 2011, 409(19): 4072

[24]

Frascaroli M.I., Salas-Peregrin J.M., Sala L.F., Signorella S. Kinetics and mechanism of the chromic oxidation of 3-O-methyl-D-glucopyranose. Polyhedron, 2009, 28(6): 1049

[25]

Xu X.R., Li H.B., Li X.Y., Gu J.D. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere, 2004, 57(7): 609

[26]

Rizzotto M., Frascaroli M.I., Signorella S., Sala L.F. Oxidation of L-rhamnose and D-mannose by chromium(VI) in aqueous acetic acid. Polyhedron, 1996, 15(9): 1517

[27]

Signorella S., Santoro M., Palopoli C., Brondino C., Salas-Peregrin J.M., Quiroz M., Sala L.F. Kinetics and mechanism of the oxidation of D-galactono-1,4-lactone by CrVI and CrV. Polyhedron, 1998, 17(16): 2739

[28]

Ji Z. Utilization of by-product sodium hydrogen sulfate from chromic acid production. Inorg. Chem. Ind., 2004, 36(2): 51.

[29]

Laubengayer A.W., McCune H.W. New crystalline phases in the system chromium (III) oxide-water. J. Am. Chem. Soc., 1952, 74(9): 2362

[30]

Yao Z.M., Li Z.H., Zhang Y. Studies on thermal dehydration of hydrated chromic oxide. J. Colloid Interf. Sci., 2003, 266(2): 382

[31]

Ding Y., Ji Z. Production and Application of Chromium Compounds, 2003, Beijing, Chemical Industry Press, 233.

[32]

Ocaña M. Nanosized Cr2O3 hydrate spherical particles prepared by the urea method. J. Eur. Ceram. Soc., 2001, 21(7): 931

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/