Structural and magnetic properties of ZnFe2O4 films deposited by low sputtering power

Jin-long Li , Zhong Yu , Ke Sun , Xiao-na Jiang , Zhong-wen Lan

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 964 -968.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 964 -968. DOI: 10.1007/s12613-012-0655-6
Article

Structural and magnetic properties of ZnFe2O4 films deposited by low sputtering power

Author information +
History +
PDF

Abstract

To validate the correctness of the Hartman-Perdok Theory (HPT), which indicates that the {111} planes have the lowest surface energy in spinel ferrites, the {111} plane orientated ZnFe2O4 thin films on Si(100), Si(111), and SiO2(500 nm)/Si(111) substrates were obtained through a radio frequency (RF) magnetron sputtering method with a low sputtering power of 80 W. All of the experiments prove that the atom energy determined by sputtering power plays an important role in the orientated growth of the ZnFe2O4 thin films, and it matches well with HPT. The ZnFe2O4 thin films exhibit ferromagnetism with a magnetization of 84.25 kJ/mol at room temperature, which is different from the bulk counterpart (antiferromagnetic as usual). The ZnFe2O4 thin films can be used as high-quality oriented inducing buffer layers for other spinel (Ni, Mn)Zn ferrite thin films and may have high potential in magnetic thin films-based devices.

Keywords

thin films / magnetron sputtering / crystal orientation / film growth / surface energy / ferromagnetism

Cite this article

Download citation ▾
Jin-long Li, Zhong Yu, Ke Sun, Xiao-na Jiang, Zhong-wen Lan. Structural and magnetic properties of ZnFe2O4 films deposited by low sputtering power. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10): 964-968 DOI:10.1007/s12613-012-0655-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cui C.W., Shi F., Li Y.G., Wang S.Y. Orthogonal analysis for perovskite structure microwave dielectric ceramic thin films fabricated by the RF magnetron-sputtering method. J. Mater. Sci. Mater. Electron., 2010, 21(4): 349

[2]

Kazantseva N.E., Bespyatykh Y.I., Sapurina I., Stejskal J., Vilčáková J., Sáha P. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater., 2006, 301(1): 155

[3]

Tanaka K., Fujita K., Nakashima S., Hojo H., Matoba T. Magnetic properties of disordered ferrite and ilmenite-hematite thin films. J. Magn. Magn. Mater., 2009, 321(7): 818

[4]

C.M. Liu and J.C. Chen, Growth of Mg-Al spinel microcrystals on a sapphire surface using a solution-precipitation method, Appl. Phys. Lett., 89(2006), No.1, art. No.011912.

[5]

U. Lüders, F. Sánchez, and J. Fontcuberta, Self-organized structures in CoCr2O4(001) thin films: Tunable growth from pyramidal clusters to a {111} fully faceted surface, Phys. Rev. B, 70(2004), No.4, art. No.045403.

[6]

A. Lisfi, C.M. Williams, L.T. Nguyen, J.C. Lodder, A. Coleman, H. Corcoran, A. Johnson, P. Chang, A. Kumar, and W. Morgan, Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films, Phys. Rev. B, 76(2007), No.5, art. No.054405.

[7]

Su H.C., Dai J.Y., Liao Y.F., Wu Y.H., Huang J.C.A., Lee C.H. The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition. Thin Solid Films, 2010, 518(24): 7275

[8]

Balakrishnan K., Arora S.K., Shvets I.V. Strain relaxation studies of the Fe3O4/MgO (100) heteroepitaxial system grown by magnetron sputtering. J. Phys. Condens. Matter, 2004, 16(30): 5387

[9]

Mishra R.K., Thomas G. Surface energy of spinel. J. Appl. Phys., 1977, 48(11): 4576

[10]

Hartman P. Crystal Growth: an Introduction, 1973, Amsterdam, North-Holland Publishing, 367.

[11]

Naoki W., Kazuo S., Nobuyasu M. Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering. Appl. Phys. Lett., 2004, 85(7): 1199

[12]

Dekkers R., Woensdregt C.F., Wollants P. Surface modeling of crystalline non-metallic inclusions. J. Non Cryst. Solids, 2001, 282(1): 49

[13]

Woensdregt C.F. Computation of surface energies in an electrostatic point charge model: I. Theory. Phys. Chem. Miner., 1992, 19(1): 52.

[14]

Huang M.R., Lin C.W., Lu H.Y. Crystallographic facetting in solid-state reacted LiMn2O4 spinel powder. Appl. Surf. Sci., 2001, 177(1): 103

[15]

Davis W.D., Vanderslice T.A. Ion energies at the cathode of a glow discharge. Phys. Rev., 1963, 131(1): 219

[16]

Seisuke N., Koji F., Katsuhisa T., Kazuyuki H. High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film. J. Phys. Condens. Matter, 2005, 17(1): 137

[17]

S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, and I. Tanaka, First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution, Phys. Rev. B, 75(2007), No.17, art. No.174443.

[18]

Hubsch J., Gavoille G., Bolfa J. Percolation and magnetic order in diluted spinels. J. Appl. Phys., 1978, 49(3): 1363

[19]

Dash J., Prasad S., Venkataramani N., Krishnan R., Kishan P., Kumar N., Kulkarni S.D., Date S.K. Study of magnetization and crystallization in sputter deposited LiZn ferrite thin films. J. Appl. Phys., 1999, 86(6): 3303

[20]

Nambissan P.M.G., Upadhyay C., Verma H.C. Positron lifetime spectroscopic studies of nanocrystalline ZnFe2O4. J. Appl. Phys., 2003, 93(10): 6320

[21]

Jeyadevan B., Tohji K., Nakatsuka K. Structure analysis of coprecipitated ZnFe2O4 by extended x-ray-absorption fine structure. J. Appl. Phys., 1994, 76(10): 6325

[22]

Kodama R.H., Berkowitz A.E. Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B, 1999, 59(9): 6321

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/