Anodic dissolution of a crack tip at AA2024-T351 in 3.5wt% NaCl solution

Hai Sheng , Chao-fang Dong , Kui Xiao , Xiao-gang Li , Lin Lu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 939 -944.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 939 -944. DOI: 10.1007/s12613-012-0651-x
Article

Anodic dissolution of a crack tip at AA2024-T351 in 3.5wt% NaCl solution

Author information +
History +
PDF

Abstract

The anodic dissolution process of a crack tip at 2024-T351 aluminium alloy (AA2024-T351) was determined by means of scanning Kelvin probe (SKP). Wedge-open loading (WOL) specimens were immersed in a 3.5wt% NaCl solution. After various durations of immersion, the Volta potential distributions around the crack were measured by SKP and the surface morphologies were observed by scanning electron microscopy (SEM). It is found that there is a nonuniform distribution of Volta potential around the crack. Before immersion, the Volta potential at crack tip is more negative than that in other regions. However, after immersion, a converse result occurs with the most positive Volta potential measured at the crack tip. SEM observations demonstrate that the noticeable positive shift of Volta potential results from the formation of corrosion products which deposit around the crack tip. Energy-dispersive spectrometry (EDS) analysis shows that the corrosion products are mainly Al oxide and Cu-rich particles. These observations implicate that the applied stress contributes to the preferential anodic dissolution of the crack tip and the redistribution of Cu.

Keywords

aluminium alloys / crack tips / dissolution / brines / stress corrosion cracking

Cite this article

Download citation ▾
Hai Sheng, Chao-fang Dong, Kui Xiao, Xiao-gang Li, Lin Lu. Anodic dissolution of a crack tip at AA2024-T351 in 3.5wt% NaCl solution. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10): 939-944 DOI:10.1007/s12613-012-0651-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Starke E.A.Jr. Staley J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci., 1996, 32(2–3): 131

[2]

Dong C.F., Sheng H., An Y.H., Li X.G., Xiao K. Local electrochemical behavior of 2A12 aluminium alloy in the initial stage of atmospheric corrosion under Cl conditions. J. Univ. Sci. Technol. Beijing, 2009, 31(7): 878.

[3]

Connolly B.J., Scully J.R. Corrosion cracking susceptibility in Al-Li-Cu alloys 2090 and 2096 as a function of isothermal aging time. Scripta Mater., 2000, 42(11): 1039

[4]

Liu X., Frankel G.S., Zoofan B., Rokhlin S.I. In-situ observation of intergranular stress corrosion cracking in AA2024-T3 under constant load conditions. Corros. Sci., 2007, 49(1): 139

[5]

Jones K., Shinde S.R., Clark P.N., Hoeppner D.W. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy. Corros. Sci., 2008, 50(9): 2588

[6]

Dixit M., Mishra R.S., Sankaran K.K. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mater. Sci. Eng., A, 2008, 478(1–2): 163.

[7]

Birbilis N., Cavanaugh M.K., Kovarik L., Buchheit R.G. Nano-scale dissolution phenomena in Al-Cu-Mg alloys. Electrochem. Commun., 2008, 10(1): 32

[8]

Song R.G., Dietzel W., Zhang B.J., Liu W.J., Tseng M.K., Atrens A. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy. Acta Mater., 2004, 52(16): 4727

[9]

Hahm J., Sibener S.J. Stress-modified electrochemical reactivity of metallic surfaces: Atomic force microscopy imaging studies of nickel and alloyed aluminum. Appl. Surf. Sci., 2000, 161(3): 375

[10]

Kermanidis Al.Th., Stamatelos D.G., Labeas G.N., Pantelakis Sp.G. Tensile behaviour of corroded and hydrogen embrittled 2024 T351 aluminum alloy specimen. Theor. Appl. Fract. Mech., 2006, 45(2): 148

[11]

Magnin T., Chambreuil A., Bayle B. The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys. Acta Mater., 1996, 44(4): 1457

[12]

Najjar D., Magnin T., Warner T.J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy. Mater. Sci. Eng., A, 1997, 238(2): 293

[13]

Cooper K.R., Kelly R.G. Crack tip chemistry and electrochemistry of environmental cracks in AA 7050. Corros. Sci., 2007, 49(6): 2636

[14]

Shoji T., Lu Z., Murakami H. Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics. Corros. Sci., 2010, 52(3): 769

[15]

Lacroix L., Ressier L., Blanc C., Mankowski G. Statistical study of the corrosion behavior of Al2CuMg intermetallics in AA2024-T351 by SKPFM. J. Electrochem. Soc., 2008, 155(1): C8

[16]

Tang X., Cheng Y.F. Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition. Electrochim. Acta, 2009, 54(5): 1499

[17]

Bergveld P., Hendrikse J., Olthuis W. Theory and application of the material work function for chemical on the field principle. Meas. Sci. Technol., 1998, 9(11): 1801

[18]

Dong C.F., Sheng H., An Y.H., Li X.G., Xiao K., Cheng Y.F. Corrosion of 7A04 aluminum alloy under defected epoxy coating studied by localized electrochemical impedance spectroscopy. Prog. Org. Coat., 2010, 67(3): 269

[19]

Suter T., Alkire R.C. Microelectrochemical studies of pit initiation at single inclusions in Al 2024-T3. J. Electrochem. Soc., 2001, 148(1): B36

[20]

Speight J.G. Lange’s Handbook of Chemistry, 2005 15th ed. New York, McGraw-Hill Book Company, 1.132.

[21]

Buchheit R.G., Montes L.P., Martinez M.A., Michael J., Hlava P.F. The electrochemical characteristics of bulk-synthesized Al2CuMg. J. Electrochem. Soc., 1999, 146(12): 4424

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/