Corrosion resistance of steel materials in LiCl-KCl melts

Le Wang , Bing Li , Miao Shen , Shi-yan Li , Jian-guo Yu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 930 -933.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 930 -933. DOI: 10.1007/s12613-012-0649-4
Article

Corrosion resistance of steel materials in LiCl-KCl melts

Author information +
History +
PDF

Abstract

The corrosion behaviors of 304SS, 316LSS, and Q235A in LiCl-KCl melts were investigated at 450°C by Tafel curves and electrochemical impedance spectroscopy (EIS). 316LSS shows the best corrosion resistance behaviors among the three materials, including the most positive corrosion potential and the smallest corrosion current from the Tafel curves and the largest electron transfer resistance from the Nyquist plots. The results are in good agreement with the weight losses in the static corrosion experiments for 45 h. This may be attributed to the better corrosion resistance of Mo and Ni existing as alloy elements in 316LSS, which exhibit the lower corrosion current densities and more positive corrosion potentials than 316LSS in the same melts.

Keywords

stainless steel / molten salts / corrosion resistance / lithium / electrolysis

Cite this article

Download citation ▾
Le Wang, Bing Li, Miao Shen, Shi-yan Li, Jian-guo Yu. Corrosion resistance of steel materials in LiCl-KCl melts. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10): 930-933 DOI:10.1007/s12613-012-0649-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z.M. Li and Z.Q. Xuan, Lithium: the new star element in 21st century, Earth, 1995, No.1, p.12.

[2]

Q.Z. You, Resource, production and market prospect of lithium in the world, World Nonferrous Met., 2008, No.5, p.42.

[3]

Li C.Y., Li Q., Zhu J.H. Development, application, and outlook of the lithium resource in the world. Met Ore Dressing Abroad, 2001, 38(8): 22.

[4]

Zhang H.J., Meng J., Tang D.X. Investigation, exploitation and application of magnesium-rare earth alloy as a structure material. J. Chin. Rare Earth Soc., 2004, 22(1): 40.

[5]

T. Aida, H. Hatta, C.S. Ranesh, S. Kavado, and Y. Kojima, Workability and mechanical properties of lighter-than-water Mg-Li alloy, [in] International Magnesium Conference, Manchester, 1997, p.143.

[6]

Guo B.K., Li X.H., Yang S.Q. Chemical Power Source, 2000, Changsha, Central South University Press

[7]

Liu S.Y. Application of lithium in battery industry and its development trend. Shanghai Nonferrous Met., 1998, 19(2): 87.

[8]

Wang X.L., Li J.L., Zhang M.J. Energetic metal of the 21th century: the use of metal lithiun in nuclear fusion. Gold J., 2001, 3(4): 249.

[9]

Zhang M.J., Guo Q.F. Energetic metal of the 21st century: the situation and development of lithium metallurgy. J. Salt Lake Res., 2001, 9(3): 52.

[10]

Sun H.H., Cheng P.D. New chance and challenge for nuclear power development. Nucl. Power Eng. Technol., 1998, 11(3): 1.

[11]

Q.Z. You, Application of lithium in thermonuclear reaction, Xinjiang Non-ferrous Met., 1996, No.1, p.113.

[12]

C.D. Zhang, Y.Y. Rui, J.H. Hong, D.Q. Xu, T.F. Zhao, F.X. Zhao, M.K. Zhang, J. Jiang, and Z.S. Xu, A Kind of Metallic Lithium Cell, Chinese Patent, Appl.97107593.X, 1997.

[13]

Feng X.K., Melendres C.A. Anodic corrosion and passivation behavior of some metals in molten LiCl-KCl containing oxide ions. J. Electrochem. Soc., 1982, 129, 1245

[14]

Cho S.H., Hong S.S., Kang D.S., Hur J.M., Lee H.S. Hot corrosion behavior of Ni-base superalloys in a lithium molten salt. Met. Mater. Int., 2009, 15(1): 51

[15]

Zhang X. Basic Study of Electrochemical Co-Deposition of Mg-Al Alloy in Alkali Chloride Melt, 2004, Beijing, University of Science and Technology Beijing, 26.

[16]

Li J.Q., Du C.W. The Corrosion Experiment Method and Monitoring Technology, 2007, Beijing, China Petrochemical Press, 44.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/