Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels

Zhi-gang Wang , Ai-min Zhao , Zheng-zhi Zhao , Jie-yun Ye , Di Tang , Guo-sen Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 915 -922.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (10) : 915 -922. DOI: 10.1007/s12613-012-0647-6
Article

Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels

Author information +
History +
PDF

Abstract

The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposition of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior.

Keywords

high strength steel / dual-phase steel / alloying elements / microstructure / mechanical properties / strain hardening

Cite this article

Download citation ▾
Zhi-gang Wang, Ai-min Zhao, Zheng-zhi Zhao, Jie-yun Ye, Di Tang, Guo-sen Zhu. Microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10): 915-922 DOI:10.1007/s12613-012-0647-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Llewellyn D.T., Hillis D.J. Dual phase steels. Ironmaking Steelmaking, 1996, 23(6): 471.

[2]

D. Bhattacharya, Developments in advanced high strength steels, [in] Proceedings of the Joint International Conference of HSLA Steels 2005 and ISUGS 2005, Sanya, 2005, p.70.

[3]

Niu F., Zhao A.M., Zhao Z.Z., Jin G.C., Tian C. Effect of Cr on transformation, microstructure and properties of ultra-high strength cold-rolled dual phase steel. J. Iron Steel Res., 2010, 22(7): 47.

[4]

Han Q.H., Kang Y.L., Zhao X.M., Lu C., Gao L.F. Microstructure and properties of Mo microalloyed cold rolled DP1000 steels. J.Iron Steel Res., 2011, 18(5): 52

[5]

Tian Z.Q., Tang D., Jiang H.T., Zeng M. Refinement mechanism of ultrafine-grain vanadium-containing dual phase steel. J. Univ. Sci. Technol. Beijing, 2010, 23(1): 32.

[6]

Nouri A., Saghafian H., Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels. J. Iron Steel Res., 2010, 17(5): 44

[7]

Cai M.H., Ding H., Zhang J.S., Li L., Li X.B., Du L.X. Transformation behavior of low carbon steels containing two different Si contents. J. Iron Steel Res., 2009, 16(2): 55

[8]

Tsukatani I., Hashimoto S., Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite. ISIJ Int., 1991, 31(9): 992

[9]

Kocks U.F., Mecking H. Physics and phenomenology of strain hardening: The FCC case. Prog. Mater Sci., 2003, 48(3): 171

[10]

Gutiérrez I., Altuna M.A. Work-hardening of ferrite and microstructure-based modeling of its mechanical behaviour under tension. Acta Mater., 2008, 56(17): 4682

[11]

Hertelé S., De Waele W., Denys R. A generic stress-strain model for metallic materials with two-stage strain hardening behaviour. Int. J. Non Linear Mech., 2011, 46(3): 519

[12]

Movahed P., Kolahgar S., Marashi S.P.H., Pouranvari M., Parvin N. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets. Mater. Sci. Eng. A, 2009, 518(1–2): 1.

[13]

Wang X.T. Science of Metal Materials, 1987, Beijing, China Machine Press, 17.

[14]

Xin J.D., Zhang A.F., Lu W.H. The oxidative resistance of Cr-carbides. J. Xi’an Jiaotong Univ., 1993, 27(6): 83.

[15]

García-Junceda A., Caballero F.G., Capdevila C., García de Andrés C. Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis. Scripta Mater., 2007, 57(2): 89

[16]

Delagnes D., Lamesle P., Mathon M.H., Mebarki N., Levaillant C. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel. Mater. Sci. Eng. A, 2005, 394(1–2): 435.

[17]

Niu Y.L., Sun X.J., Liu Q.Y., Sun L.J. Influence of Cr on static recrystallization of a low carbon and high-Nb X80 pipeline steel. China Metall., 2009, 19(10): 25.

[18]

MA M.T., Wu B.R. Dual Phase Steel: The Physical and Mechanical Metallurgy, 2009 2nd Ed. Beijing, Metallurgical Industry Press, 65.

[19]

Guo A.M., Zou D.H., Yi L.X., Dong H., Li P., Liu K., Wu K. Effects of aging on microstructure and mechanical property of ultralow carbon acicular ferrite steel. Acta Metall. Sin., 2009, 45(4): 390.

[20]

Chen X., Pan F., Mao J., Wang J., Zhang D., Tang A., Peng J. Effect of heat treatment on strain hardening of ZK60 Mg alloy. Mater. Des., 2011, 32(3): 1526

[21]

Zhong H.J., Zhen Z.G., Jian S.L. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater. Sci. Eng. A, 1995, 190(1–2): 55.

[22]

Akbarpour M.R., Ekrami A. Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels. Mater. Sci. Eng. A, 2008, 477(1–2): 306.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/