SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate

Fitria Rahmawati , Bambang Prijamboedi , Syoni Soepriyanto , Ismunandar

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (9) : 863 -871.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (9) : 863 -871. DOI: 10.1007/s12613-012-0640-0
Article

SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate

Author information +
History +
PDF

Abstract

The aim of this research is to study zirconia-based electrolyte materials to increase the commercial value of zircon concentrate as a side product of tin mining industries. Synthesis of CaO-Y2O3-ZrO2 (CYZ) and 8mol% Y2O3-ZrO2 (8YSZ) was carried out by solid state reaction. The result shows that ZrO2 presents in tetragonal phase. Doping of Y2O3 into ZrO2 allows a phase transformation from tetragonal into cubic structure with small percentage of monoclinic phase. Meanwhile, doping of CaO-Y2O3 allows a phase transformation into a single cubic phase. These phase transformations enhance the ionic conductivity of the material. Introduction of 10wt% of LSGM-8282 into CYZ (CYZ-L90:10) allows further improvement of inter-grain contact shown by SEM morphological analysis and leads to the enhancement of ionic conductivity.

Keywords

solid oxide fuel cells (SOFC) / solid electrolytes / LSGM electrolyte / zirconia / phase transformations / ionic conductivity

Cite this article

Download citation ▾
Fitria Rahmawati, Bambang Prijamboedi, Syoni Soepriyanto, Ismunandar. SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(9): 863-871 DOI:10.1007/s12613-012-0640-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chem. Mater., 2004, 16, 3988

[2]

Mori T., Drennan J., Lee J.H., Li J.G., Ikegami T. Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics, 2002, 154–155, 461

[3]

Rizea A., Chirlesan D., Petot C., Petot-Ervas G. The influence of alumina on the microstructure and grain boundary conductivity of yttria-doped zirconia. Solid State Ionics, 2002, 146(3): 341

[4]

Brett D.J.L., Atkinson A., Brandon N.P., Skinner S.J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev., 2008, 37, 1568

[5]

Rizea A., Petot-Ervas G., Petot C., Abrudeanu M., Graham M.J., Sproule G.I. Transport properties of yttrium-doped zirconia influence of kinetic demixing. Solid State Ionics, 2007, 177(39–40): 3417

[6]

Gong J.H., Li Y., Zhang Z.T., Tang Z.L. ac impedance study of zirconia doped with yttria and calcia. J. Am. Ceram. Soc., 2000, 83, 648

[7]

Gong J.H., Li Y., Tang Z.L., Zhang Z.T. Ionic conductivity in the ternary system (ZrO2)1−0.08x−0.12y-(Y2O3)0.08x-(CaO)0.12y. J. Mater. Sci., 2000, 35, 3547

[8]

Li Y., Liu M., Gong J.H., Chen Y., Tang Z.L., Zhang Z.T. Grain-boundary effect in zirconia stabilized with yttria and calcia by electrical measurements. Mater. Sci. Eng. B, 2003, 103, 108

[9]

Chaim R. Microstructure and bending strength in the ternary (Mg-Ca)-partially-stabilized zirconia. J. Am. Ceram. Soc., 1992, 75, 694

[10]

Kaneko H., Jin F.X., Taimatsu H. Electrical conductivity of zirconia stabilized with scandia and yttria. J. Am. Ceram. Soc., 1993, 76(3): 793

[11]

Chiba R., Ishii T., Yoshimura F. Temperature dependence of ionic conductivity in (1−x)ZrO2-(xy)Sc2O3-yYb2O3 electrolyte material. Solid State Ionics, 1996, 91, 249

[12]

Bućko M.M. Ionic conductivity of CaO-Y2O3-ZrO2 materials with constant oxygen vacancy concentration. J. Eur. Ceram. Soc., 2004, 24, 1305

[13]

Ishihara T., Kilner J.A., Honda M., Takita Y. Oxygen surface exchange and diffusion in the new perovskite oxide ion conductor LaGaO3. J. Am. Chem. Soc., 1997, 119, 2747

[14]

Tietz F. Thermal expansion of SOFC materials. Ionics, 1999, 5, 129

[15]

Ishihara T., Honda M., Shibayana T., Minami H., Nishiguchi H., Takita Y. Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. J. Electrochem. Soc., 1998, 145, 3177

[16]

Hayashi H., Saitou T., Maruyama N., Inada H., Kawamura K., Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics, 2005, 176, 613

[17]

S. Soepriyanto, A.A. Korda, and T. Hidayat, Development of zircon base industrial product from zircon-sand concentrate of Bangka tin processing, [in] Proceeding of the 3rd International Workshop on Earth Science and Technology, Fukuoka, 2005.

[18]

Langford J.I., Wilson A.J.C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr., 1978, 11, 102

[19]

Taş A.C., Majewski P.J., Aldinger F. Chemical preparation of pure and strontium and/or magnesium-doped lanthanum gallate powders. J. Am. Ceram. Soc., 2000, 83, 2954

[20]

Majewski P., Rozumek M., Taş C.A., Aldinger F. Processing of (La,Sr)(Ga,Mg)O3 solid electrolyte. J. Electroceram., 2002, 8, 65

[21]

Rahmawati F., Prijamboedi B., Soepriyanto S., Ismunandar Doping calcia and yttria into zirconia obtained from by product of tin concentrator to improve its ionic conductivity. ITB J. Sci., 2011, 43A(1): 9

[22]

West A.R. Basic Solid State Chemistry, 1999 2nd Ed. New York, John Wiley & Sons, Ltd.

[23]

Agrawal R.C., Gupta R.K. Review superionic solids: composite electrolyte phase—an overview. J. Mater. Sci., 1999, 34, 1131

[24]

Gong J.H., Li Y., Tang Z.L., Xie Y.S., Zhang Z.T. Temperature-dependence of the lattice conductivity of mixed calcia/yttria-stabilized zirconia. Mater. Chem. Phys., 2002, 76, 212

[25]

Oberg E., Jones F., Ryffel H., McCauley C., Heald R. Machinery’s Handbook 28th Edition, 2008, New York, Industrial Press

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/