Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction

Dong Li , Fang Lian , Xin-mei Hou , Kuo-chih Chou

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (9) : 856 -862.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (9) : 856 -862. DOI: 10.1007/s12613-012-0639-6
Article

Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction

Author information +
History +
PDF

Abstract

Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720°C for 15 h are indexed to the hexagonal structure with a space group of 3 R $\bar 3$ m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.

Keywords

lithium batteries / electrode / manganese oxide / solid state reactions / calcination

Cite this article

Download citation ▾
Dong Li, Fang Lian, Xin-mei Hou, Kuo-chih Chou. Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(9): 856-862 DOI:10.1007/s12613-012-0639-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davidson I.J., McMillan R.S., Murray J.J., Greedan J.E. Lithium-ion cell based on orthorhombic LiMnO2. J. Power Sources, 1995, 54(2): 232

[2]

Fan G., Zeng Y., Chen R., G. Microstructure and electrochemical characterization of spherical-like orthorhombic LiMnO2 via co-precipitation. J. Alloys Compd., 2008, 461(1–2): 267

[3]

Guo Z.P., Wang G.X., Konstantinov K., Liu H.K., Dou S.X. Electrochemical properties of orthorhombic LiMnO2 prepared by one-step middle-temperature solid-state reaction. J. Alloys Compd., 2002, 346(1–2): 255

[4]

Hwang S.J., Park H.S., Choy J.H., Campet G. Evolution of local structure around manganese in layered LiMnO2 upon chemical and electrochemical delithiation/relithiation. Chem. Mater., 2000, 12, 1818

[5]

Karan N.K., Saavedra-Arias J.J., Pradhan D.K., Melgarejo R., Kumar A., Thomas R., Katiyar R.S. Structural and electrochemical characterizations of solution derived LiMn0.5Ni0.5O2 as positive electrode for li-ion rechargeable batteries. Electrochem. Solid State Lett., 2008, 11(8): A135

[6]

Cho T.H., Shiosaki Y., Noguchi H. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources, 2006, 159(2): 1322

[7]

Yabuuchi N., Yoshii K., Myung S.T., Nakai I., Komaba S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiMn1/3Ni1/3-Co1/3O2. J. Am. Chem. Soc., 2011, 133(12): 4404

[8]

Lian F., Axmann P., Stinner C., Liu Q.G., Wohlfahrt-Mehrens M. Comparative study of the preparation and electrochemical performance of LiNi1/2Mn1/2O2 electrode material for rechargeable lithium batteries. J. Appl. Electrochem., 2008, 38, 613

[9]

Wang T., Liu Z.H., Fan L.H., Han Y.F., Tang X.H. Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation. Powder Technol., 2008, 187(2): 124

[10]

Kim J.H., Sun Y.K. Electrochemical performance of Li[LixNi(1−3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol-gel method. J. Power Sources, 2003, 119–121, 166

[11]

Huang X.K., Zhang Q.S., Chang H.T., Gan J.L., Yue H.J., Yang Y. Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances. J. Electrochem. Soc., 2009, 156(3): A162

[12]

Numata K., Sakaki C., Yamanaka S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3. Solid State Ionics, 1999, 117(3–4): 257

[13]

Wei G.Z., Lu X., Ke F.S., Huang L., Li J.T., Wang Z.X., Zhou Z.Y., Sun S.G. Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance Lithium-Ion batteries. Adv. Mater., 2010, 22(39): 4364

[14]

Park Y.J., Hong Y.S., Wu X.L., Ryu K.S., Chang S.H. Structural investigation and electrochemical behaviour of Li[Li1/3−2x/3NixMn2/3−x/3]O2 compounds by a simple combustion method. J. Power Sources, 2004, 129(2): 288

[15]

Yu L.Y., Qiu W.H., Lian F., Huang J.Y., Kang X.L. Understanding the phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/3]O2·0.35LiMn1/3Ni1/3Co1/3O2. J. Alloys Compd., 2009, 471(1–2): 317

[16]

Yu L.Y., Qiu W.H., Lian F., Liu W., Kang X.L., Huang J.Y. Comparative study of layered 0.65 Li[Li1/3Mn2/3]O2·0.35LiMO2(M=Co, Ni1/2Mn1/2 and Mn1/3Ni1/3Co1/3) cathode materials. Mater. Lett., 2008, 62(17–18): 3010

[17]

Liu J., Qiu W., Yu L., Zhao H., Li T. Synthesis and electrochemical characterization of layered LiMn1/3Ni1/3Co1/3-O2 cathode materials by low-temperature solid-state reaction. J. Alloys Compd., 2008, 449(1–2): 326.

[18]

Villepin J. d., Novak A. Liaison hydrogène O-H-O symétrique: II. Spectres de vibration des oxalates acides de lithium hydratés et anhydres. J. Mol. Struct., 1976, 30, 255

[19]

Hu J., Jia N., Jiang J.X., Ma M.G., Zhu J.F., Sun R.C., Li J.Z. Hydrothermal preparation of boehmite-doped AgCl nanocubes and their characterization. Mater. Lett., 2011, 65(11): 1531

[20]

Yang S.Y., Wang X.Y., Wei J.L., Li X.Q., Tang A.P. Synthesis and electrochemical performance of Na-Mn-O cathode materials. Acta Phys. Chim. Sin., 2008, 24(9): 1669.

[21]

Nakamoto K., Morimoto Y., Martell A.E. Infrared spectra of metalchelate compounds V effect of substituents on the infrared spectra of metal acetylacetonates. J. Chem. Phys., 1962, 66, 346

[22]

Suresh P., Shukla A.K., Munichandraiah N. Characterization of Zn- and Fe-substituted LiMnO2 as cathode materials in Li-ion cells. J. Power Sources, 2006, 161(2): 1307

[23]

Julien C.M., Massot M. Lattice vibrations of materials for lithium rechargeable batteries: I. Lithium manganese oxide spinel. Mater. Sci. Eng. B, 2003, 97(3): 217

[24]

Tarte P., Preudhomme J. 6Li-7Li isotopic shifts in the infrared spectrum of inorganic lithium compounds: II. Rhombohedral LiXO2 compounds. Spectrochim. Acta, 1970, 26, 747

[25]

Tarte P. Identification of Li-O bands in the infra-red spectra of simple lithium compounds containing LiO4 tetrahedra. Spectrochim. Acta, 1964, 20(2): 238

[26]

Du T.F., Zhang S.J. Stduies on the thermal decomposition of potassium hydrogen oxalate monohydrate by combined thermal analysis and gas chromatography. Chin. J. Inorg. Chem., 1999, 15, 531.

[27]

Hu X.H., Ai X.P., Yang H.X., Li S.X. A study of LiMn2O4 synthesized from Li2CO3 and MnCO3. J. Power Sources, 1998, 74(2): 240

[28]

Armstrong A.R., Holzapfel M., Novak P., Johnson C.S., Kang S.H., Thackeray M.M., Bruce P.G. Demonstrating oxygen loss and associated structural reorganization in the Lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc., 2006, 128, 8694

[29]

Ryu J., Park B., Kim S., Park Y. Effects of surface area on electrochemical performance of Li[Ni0.2Li0.2Mn0.6]O2 cathode material. J. Appl. Electrochem., 2009, 39(7): 1059

[30]

Hwang B.J., Wang C.J., Chen C.H., Tsai Y.W., Venkateswarlu M. Electrochemical properties of Li[NixLi(1−2x)/3-Mn(2−x)/3]O2 (0≤x≤0.5) cathode materials prepared by a sol-gel process. J. Power Sources, 2005, 146(1–2): 658

[31]

Thackeray M.M., Kang S.H., Johnson C.S., Vaughey J.T., Benedek R., Hackney S.A. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem., 2007, 17, 3112

[32]

Julien C., Nazri G.A., Rougier A. Electrochemical performances of layered LiM1−yM′yO2 (M=Ni, Co; M′=Mg, Al, B) oxides in lithium batteries. Solid State Ionics, 2000, 135(1–4): 121

[33]

Shaju K.M., Subba Rao G.V., Chowdari B.V.R. Performance of layered LiMn1/3Ni1/3Co1/3O2 as cathode for Li-ion batteries. Electrochim. Acta, 2002, 48(2): 145

[34]

Lim J.H., Bang H., Lee K.S., Amine K., Sun Y.K. Electrochemical characterization of Li2MnO3-LiMn1/3Ni1/3-Co1/3O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. J. Power Sources, 2009, 189(1): 571

[35]

Weill F., Tran N., Croguennec L., Delmas C. Cation ordering in the layered Li1+x(Ni0.425Mn0.425Co0.15)1−xO2 materials (x=0 and 0.12). J. Power Sources, 2007, 172(2): 893

[36]

Thackeray M.M., Kang S.H., Johnson C.S., Vaughey J.T., Hackney S.A. Comments on the structural complexity of lithium-rich Li1+xM1 −xO2 electrodes (M=Mn, Ni, Co) for lithium batteries. Electrochem. Commun., 2006, 8, 1531

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/