First-principle study on the surface atomic relaxation properties of sphalerite

Jian Liu , Shu-ming Wen , Yong-jun Xian , Shao-jun Bai , Xiu-min Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (9) : 775 -781.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (9) : 775 -781. DOI: 10.1007/s12613-012-0627-x
Article

First-principle study on the surface atomic relaxation properties of sphalerite

Author information +
History +
PDF

Abstract

The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220) surfaces of sphalerite undergo surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk (d 1), whereas Zn atoms move toward the bulk (d 2), forming an S-enriched surface. The values of these displacements are 0.003 nm for d 1 and 0.021 nm for d 2 on the (110) surface, and 0.002 nm for d 1 and 0.011 nm for d 2 on the (220) surface. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. X-ray photoelectron spectroscopic (XPS) analysis provides the evidence for the S-enriched surface. A polysulphide (S n 2−) surface layer with a binding energy of 163.21 eV is formed on the surface of sphalerite after its grinding under ambient atmosphere. This S-enriched surface and the S n 2− surface layer have important influence on the flotation properties of sphalerite.

Keywords

sphalerite / surface relaxation / density functional theory / froth flotation

Cite this article

Download citation ▾
Jian Liu, Shu-ming Wen, Yong-jun Xian, Shao-jun Bai, Xiu-min Chen. First-principle study on the surface atomic relaxation properties of sphalerite. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(9): 775-781 DOI:10.1007/s12613-012-0627-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tong X., He J., Rao F., Liu S.Q., Zhou Q.H. Experimental study on activation of high iron-bearing marmatite. Min. Metall. Eng., 2006, 26(4): 19.

[2]

Holuszko M.E., Franzidis J.P., Manlapig E.V., Hampton M.A., Donose B.C., Nguyen A.V. The effect of surface treatment and slime coatings on ZnS hydrophobicity. Miner. Eng., 2008, 21(12–14): 958

[3]

Shean B.J., Cilliers J.J. A review of froth flotation control. Int. J. Miner. Process., 2011, 100(3–4): 57

[4]

Fornasiero D., Ralston J. Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process., 2006, 78(4): 231

[5]

Stanton M.R., Gemery-Hill P.A., Shanks W.C.III Taylor C.D. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0–4.0. Appl. Geochem., 2008, 23(2): 136

[6]

Vaughan D.J., Becker U., Wright K. Sulphide mineral surfaces: theory and experiment. Int. J. Miner. Process., 1997, 51(1): 1

[7]

Harmer S.L., Goncharova L.V., Kolarova R., Lennard W.N., Muñoz-Márquez M.A., Mitchell I.V., Nesbitt H.W. Surface structure of sphalerite studied by medium energy ion scattering and XPS. Surf. Sci., 2007, 601(2): 352

[8]

Chen J.H., Chen Y., Li Y.Q. Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles. Trans. Nonferrous Met. Soc. China, 2010, 20(3): 502

[9]

Baláž P., Bastl Z., Briančin J., Ebert I., Lipka J. Surface and bulk properties of mechanically activated zinc sulphide. J. Mater. Sci., 1992, 27(3): 653

[10]

Chen J.H., Chen Y. A first-principle study of the effect of vacancy defects and impurities on the adsorption of O2 on sphalerite surfaces. Colloids Surf. A, 2010, 363(1-3): 56

[11]

Harmer S.L., Mierczynska-Vasilev A., Beattie D.A., Shapter J.G. The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite. Miner. Eng., 2008, 21(12–14): 1005

[12]

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244

[13]

Payne M.C., Teter M.P., Allan D.C., Arias T.A., Joannopoulos J.D. Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64(4): 1045

[14]

Gao H.T., Liu Y.Y., Ding C.H., Dai D.M., Liu G.J. Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities. Int. J. Miner. Metall. Mater., 2011, 18(5): 606

[15]

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865

[16]

Luo W.H., Hu W.Y., Xiao S.F. Size effect on the thermodynamic properties of silver nanoparticles. J. Phys. Chem. C, 2008, 112(7): 2359

[17]

Duke C.B., Paton A., Kahn A. The atomic geometries of GaP(110) and ZnS(110) revisited: a structural ambiguity and its resolution. J. Vac. Sci. Technol. A, 1984, 2(2): 515

[18]

Simpson D.J., Bredow T., Chandra A.P., Cavallaro G.P., Gerson A.R. The effect of iron and copper impurities on the wettability of sphalerite (110) surface. J. Comput. Chem., 2011, 32(9): 2022

[19]

Steele H.M., Wright K., Hillier I.H. A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species. Phys. Chem. Miner., 2003, 30(2): 69

[20]

Lan T., Xu F.Y. The law and mechanism of relaxation and reconstruction of the crystal surfaces. Chin. J. At. Mol. Phys., 1995, 12(4): 438.

[21]

Boulton A., Fornasiero D., Ralston J. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS. Int. J. Miner. Process., 2003, 70(1–4): 205

[22]

Weisener C.G., Smart R.S.C., Gerson A.R. A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. Int. J. Miner. Process., 2004, 74(1–4): 239

[23]

Khmeleva T.N., Skinner W.M., Beattie D.A. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process., 2005, 76(1–2): 43

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/