Structure and properties of NASICON synthesized by two different zirconium salts

Heng-yao Dang , Xing-min Guo , Yong-ping Huang , Jiang-qi Rong

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 768 -773.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 768 -773. DOI: 10.1007/s12613-012-0626-y
Article

Structure and properties of NASICON synthesized by two different zirconium salts

Author information +
History +
PDF

Abstract

ZrOCl2·8H2O and ZrO(NO3)2·2H2O were used respectively to synthesize a NASICON solid electrolyte by a sol-gel method. The structure and properties of two samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The crystal structure was investigated by the Rietveld refinement. It is found that both the samples contain a monoclinic C2/c phase as the main conductive phase with the lattice parameters of a=1.56312 nm, b=0.90784 nm and c=0.92203 nm, though a small amount of rhombohedral phase is also detected in the final product. The sample synthesized by ZrO(NO3)2·2H2O contains more monoclinic phase (89.48wt%) than that synthesized by ZrOCl2·8H2O (74.91wt%). As expected, the ionic conductivity of the latter is higher than that of the former; however, the activation energy of the latter (0.37 eV) is slightly higher than that of the former (0.35 eV).

Keywords

NASICON / superionic conducting materials / sodium compounds / sol-gel process / microstructure / electrical conductivity

Cite this article

Download citation ▾
Heng-yao Dang, Xing-min Guo, Yong-ping Huang, Jiang-qi Rong. Structure and properties of NASICON synthesized by two different zirconium salts. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 768-773 DOI:10.1007/s12613-012-0626-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hong H.Y.P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull., 1976, 11(2): 173

[2]

Goodenough J.B., Hong H.Y.P., Kafalas J.A. Fast Na+-ion transport in skeleton structure. Mater. Res. Bull., 1976, 11(2): 203

[3]

Zhu D., Luo F., Xie Z., Zhou W. Preparation and characteristic of NASICON ceramics. Rare Met., 2006, 25(6): 39

[4]

Morio M., Hyodo T., Shimizu Y., Egashira M. Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors. Sens. Actuators B, 2009, 139(2): 563

[5]

Kida T., Seo M.H., Kishi S., Kanmura Y., Yamazoe N., Shimanoe K. Application of a solid electrolyte CO2 sensor for the analysis of standard volatile organic compound gases. Anal. Chem., 2010, 82(8): 3315

[6]

Kida T., Kishi S., Yamazoe N., Shimanoe K. Stability and interfacial structure of a NASICON-based CO2 sensor fitted with a solid-reference electrode. Sens. Lett., 2011, 9(1): 288

[7]

Kida T., Morinaga N., Kishi S., An K.M., Sim K.W., Chae B.Y., Kim J.K., Ryu B.K., Shimanoe K. Electrochemical detection of volatile organic compounds using a Na3Zr2Si2PO12/Bi2Cu0.1V0.9O5.35 heterojunction device. Electrochim. Acta, 2011, 56(22): 7484

[8]

Alpen U. v., Bell M.F., Wichelhaus W. Phase transition in NASICON (Na3Zr2Si2PO12). Mater. Res. Bull., 1979, 14(10): 1317

[9]

Yoldas B.E., Lloyd I.K. Nasicon formation by chemical polymerization. Mater. Res. Bull., 1983, 18(10): 1171

[10]

Yang Y., Liu C.C. Development of a NASICON-based amperometric carbon dioxide sensor. Sens. Actuators B, 2000, 62(1): 30

[11]

He Y., Quan B., Wang B., Zhang C., Liu F. Investigation of miniature CO2 gas sensor based on NASICON. Russ. J. Electrochem., 2007, 43(11): 1289

[12]

Wang B., Liang X.S., Liu F.M., Zhong T.G., Zhao C., Lu G.Y., Quan B.F. Synthesis and characterization of NASICON nanoparticles by sol-gel method. Chem. Res. Chin. Univ., 2009, 25(1): 13.

[13]

Liang X.S., Yang S.Q., Zhong T.G., Diao Q., Zhang H., Li J.G., Quan B.F., Lu G.Y. Mixed potential type carbon monoxide sensor utilizing NASICON and spinel type oxide electrode. Sens. Lett., 2011, 9(2): 832

[14]

Zhang S., Quan B.F., Zhao Z.Y., Zhao B.G., He Y.H., Chen W.Y. Preparation and characterization of NASICON with a new sol-gel process. Mater. Lett., 2003, 58(1–2): 226.

[15]

Dang H.Y., Guo X.M. Investigation of porous counter electrode for the CO2 sensing properties of NASICON-based gas sensor. Solid State Ionics, 2011, 201(1): 68

[16]

Baumann F.S., Fleig J., Habermeier H.U., Maier J. Impedance spectroscopic study on well-defined (La,Sr)-(Co,Fe)O3−δ model electrodes. Solid State Ionics, 2006, 177(11–12): 1071

[17]

Aono H., Imanaka N., Adachi G.Y. High Li+ conducting ceramics. Acc. Chem. Res., 1994, 27(9): 265

[18]

Lee J.S., Chang C.M., Lee Y.I., Lee J.H., Hong S.H. Spark plasma sintering (SPS) of NASICON ceramics. J. Am. Ceram. Soc., 2004, 87(2): 305

[19]

Dang H.Y., Guo X.M. Characteristics of NASICON-based thick-film CO2 sensor attached with integrated auxiliary electrode. IEEE Sens. J., 2012, 12(7): 2430

[20]

Yde-Andersen S., Lundsgaard J.S., Møller L., Engell J. Properties of NASICON electrolytes prepared from alkoxide derived gels: ionic conductivity, durability in molten sodium and strength test data. Solid State Ionics, 1984, 14(1): 73

[21]

Bogusz W., Krok F., Piszczatowski W. Particular features of admittance spectra of polycrystalline NASICON samples. Solid State Ionics, 1999, 119(1–4): 165

[22]

Traversa E., Aono H., Sadaoka Y., Montanaro L. Electrical properties of sol-gel processed NASICON having new compositions. Sens. Actuators B, 2000, 65(1): 204

[23]

Essoumhi A., Favotto C., Mansori M., Satre P. Synthesis and characterization of a NASICON series with general formula Na2.8Zr2−ySi1.8−4yP1.2+4yO12 (0≤y≤0.45). J. Solid State Chem., 2004, 177(12): 4475

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/