Preparation and characterization of barium strontium titanate/silicon nanoporous pillar array composite thin films by a sol-gel method

Shun-hua Xiao , Wei-fen Jiang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 762 -767.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 762 -767. DOI: 10.1007/s12613-012-0625-z
Article

Preparation and characterization of barium strontium titanate/silicon nanoporous pillar array composite thin films by a sol-gel method

Author information +
History +
PDF

Abstract

Barium strontium titanate (Ba0.5Sr0.5TiO3, BST)/silicon nanoporous pillar array (Si-NPA) thin films were prepared by a spin-coating/annealing technique based on Si-NPA with micro/nano-structure. Both the isomer conversion of acetylacetone and the network structure combined by enol and Ti-alkoxide facilitate the formation of the BST sol and the subsequent crystallization. Before the perovskite BST begins to form, the intermediate phase (Ba,Sr)Ti2O5CO3 is found. The boundary between BST and Si-NPA is of clarity and little interface diffusion, disclosing that Si-NPA is an ideal template substrate in the preparation of multifunctional composite films.

Keywords

barium strontium titanate / silicon / nanoporous materials / composite films / sol-gel process

Cite this article

Download citation ▾
Shun-hua Xiao, Wei-fen Jiang. Preparation and characterization of barium strontium titanate/silicon nanoporous pillar array composite thin films by a sol-gel method. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 762-767 DOI:10.1007/s12613-012-0625-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hou S.Y., Kwo J., Watts R.K., Cheng J.Y., Fork D.K. Structure and properties of epitaxial Ba0.5Sr0.5TiO3/SrRuO3/ ZrO2 heterostructure on Si grown by off-axis sputtering. Appl. Phys. Lett., 1995, 67, 1387

[2]

Ivanov D., Caron M., Ouellet L., Blain S., Hendric N., Currie J. Structural and dielectric properties of spin-on barium-strontium titanate thin films. J. Appl. Phys., 1995, 77, 2666

[3]

Kumar A., Manavalan S.G. Characterization of barium strontium titanate thin films for tunable microwave and DRAM applications. Surf. Coat. Technol., 2005, 198, 406

[4]

Hwang C.S., Park S.O., Cho H.J., Kang C.S., Kang H.K., Lee S.I., Lee M.Y. Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application. Appl. Phys. Lett., 1995, 67, 2819

[5]

Hashimoto K., Xu H., Mukaigawa T., Kubo R., Zhu H., Noda M., Okuyama M. Si monolithic microbolometers of ferroelectric BST thin film combined with readout FET for uncooled infrared image sensor. Sens. Actuators A, 2001, 88, 10

[6]

Seema A., Sharma G.L. Humidity sensing properties of (Ba,Sr)TiO3 thin film grown by hydrothermal-electrochemical method. Sens. Actuators B, 2002, 85, 205

[7]

Zhu W., Tan O.K., Yan Q., Oh J.T. Microstructure and hydrogen gas sensitivity of amorphous (Ba,Sr)TiO3 thin film sensors. Sens. Actuators B, 2000, 65, 366

[8]

Chong K.B., Kong L.B., Chen L.F., Yan L., Tan C.Y., Yang T., Ong C.K., Osipowicz T. Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices. J. Appl. Phys., 2004, 95, 1416

[9]

Cole M.W., Hubbard C., Ngo E., Ervin M., Wood M., Geyer R.G. Structure-property relationships in pure and acceptor-doped Ba1−xSrxTiO3 thin films for tunable microwave device applications. J. Appl. Phys., 2002, 92, 475

[10]

Kim S.H., Kim C.E., Oh Y.J. Influence of A12O3 diffusion barrier and PbTiO3 seed layer on costructural and ferroelectric characteristics of PZT thin films by sol-gel spin coating method. Thin Solid Films, 1997, 305, 32.

[11]

Gösele U., Lehmann V. Light-emitting porous silicon. Mater. Chem. Phys., 1995, 40, 253

[12]

Liu W.L., Xing S., Lian J., Wang L., Song Z.T., Lin C.L., Xu Z.K., Chu P.K. Microstructure investigation of BaxSr1−xTiO3 thin film grown on porous silicon substrate. Mater. Sci. Semicond. Process., 2004, 7, 253

[13]

Yonehara T., Sakaguchi K., Sato N. Epitaxial layer transfer by bond and etch back of porous Si. Appl. Phys. Lett., 1994, 64, 2108

[14]

Levchenko V.I., Postnova L.I., Bondarenko V.P., Vorozov N.N., Yakovtseva V.A., Dolgyi L.N. Heteroepitaxy of PbS on porous silicon. Thin Solid Films, 1999, 348, 141

[15]

Kesler V.G., Logvinskii L.M., Mashanov V.I., Pchelyakov O.P., Ulyanov V.V. Study of the component distribution in Si/GexSi1−x/Si heterostructures grown by molecular beam epitaxy. Phys. Solid State, 2002, 44, 709

[16]

Saravanan S., Hayashi Y., Soga T., Jimbo T., Umeno M., Sato N., Yonehara T. Growth of GaAs epitaxial layers on Si substrate with porous Si intermediate layer by chemical beam epitaxy. J. Cryst. Growth, 2002, 237–239, 1450

[17]

Xu H.J., Fu X.N., Sun X.R., Li X.J. Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Phys. Sin., 2005, 54, 2352.

[18]

Wang H.Y., Li X.J. Capacitive humidity-sensing properties of Si-NPA and Fe3O4/Si-NPA. Acta Phys. Sin., 2005, 54, 2220.

[19]

Chen X.Y., Lu Y.F., Tang L.J., Wu Y.H., Cho B.J., Xu X.J., Dong J.R., Song W.D. Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition. J. Appl. Lett., 2005, 97, 014913.

[20]

Korsunskaya N.E., Torchinskaya T.V., Khomenkova L.Y., Dzhumaev B.R., Prokes S.M. Suboxide-related centre as the source of the intense red luminescence of porous Si. Microelectron. Eng., 2000, 51–52, 485

[21]

Mitchell D.F., Clark K.B., Bardwell J.A., Leonard W.N., Massoumi G.R., Mitchell I.V. Film thickness measurements of SiO2 by XPS surface and interface analysis. Surf. Interface Anal., 1994, 21, 44

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/