Eutectic reaction and cored dendritic morphology in yttrium doped Zr-based amorphous alloys

Wei-jie Peng , Yong Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 747 -751.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 747 -751. DOI: 10.1007/s12613-012-0622-2
Article

Eutectic reaction and cored dendritic morphology in yttrium doped Zr-based amorphous alloys

Author information +
History +
PDF

Abstract

The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100−xY x, and (Zr0.55Al0.15-Ni0.10Cu0.20)100−xY x (x=0, 0.4, and 1, thus the two alloy systems were denoted as Zr52.5, Zr52.5Y0.4, Zr52.5Y1, and Zr55, Zr55Y0.4, Zr55Y1, respectively) was studied. Transmission electron microscopy (TEM) results suggested that the crystalline phases were different in the two Zr-based alloys and with different yttrium contents. ZrNi-phase and Al3Zr5 phase precipitations can be well explained by the mechanisms of nucleation and growth. Al3Zr5 phase is mainly formed by a peritectic-like reaction, while ZrNi-phase by a eutectic reaction. The contents of elements Y, Al, and Ti may dominate the reaction types. The orientation relationship between Y2O3 particles and Al3Zr5 phase is also discussed.

Keywords

zirconium alloys / amorphous alloys / bulk metallic glasses / yttrium / eutectic structure / dendritic structure

Cite this article

Download citation ▾
Wei-jie Peng, Yong Zhang. Eutectic reaction and cored dendritic morphology in yttrium doped Zr-based amorphous alloys. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 747-751 DOI:10.1007/s12613-012-0622-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y., Pan M.X., Zhao D.Q., Wang R.J., Wang W.H. Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition. Mater. Trans., 2000, 41(11): 1410.

[2]

Liu C.T., Chisholm M.F., Miller M.K. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics, 2002, 10(11–12): 1105

[3]

Qiang J.B., Zhang W., Inoue A. Formation and compression mechanical properties of Ni-Zr-Nb-Pd bulk metallic glasses. J. Mater. Res., 2008, 23(7): 1940

[4]

Jing Q., Zhang Y., Wang D., Li Y. A study of the glass forming ability in ZrNiAl alloys. Mater. Sci. Eng. A, 2006, 441(1–2): 106.

[5]

Sun Y.J., Qu D.D., Huang Y.J., Liss K.D., Wei X.S., Xing D.W., Shen J. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability. Acta Mater., 2009, 57(4): 1290

[6]

Yan Z.J., Li J.F., He S.R., Zhou Y.H. Relation between formation of compounds and glass forming ability for Zr-Al-Ni alloys. Mater. Lett., 2003, 57(12): 1840

[7]

Wang X.D., Lee H., Yi S. Crystallization behavior of preannealed bulk amorphous alloy Zr62Al8Ni13Cu17. Mater. Lett., 2006, 60(7): 935

[8]

Tariq N.H., Hasan B.A., Akhter J.I. Evolution of microstructure in Zr55Cu30Al10Ni5 bulk amorphous alloy by high power pulsed Nd:YAG laser. J. Alloys Compd., 2009, 485(1–2): 212

[9]

Xing D., Shen J., Zhang L., Sun J., Wang X., Huang Y., Liaw P.K. Evolution of the primary crystals and the amor phous matrix following annealing of a bulk Zr56.6Cu17.3Ni12.5-Al9.6Ti4 metallic glass. Mater. Sci. Eng. A, 2009, 513–514, 8.

[10]

Zhang P.N., Li J.F., Hu Y., Zhou Y.H. Microstructural evolution during annealing and rolling Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass. Mater. Sci. Eng. A, 2009, 499(1–2): 374.

[11]

Kim C.W., Jeong H.G., Lee D.B. Oxidation of Zr65Al10Ni10Cu15 bulk metallic glass. Mater. Lett., 2008, 62(4–5): 584

[12]

Xing D., Shen J., Zhang L., Sun J., Wang X., Wang H., Huang Y., Liaw P.K. Investigation of precipitation phases in as-cast wedge ingot of bulk amorphous Zr56.6Cu17.3Ni12.5-Al9.6Ti4 alloy. J. Alloys Compd., 2009, 481(1–2): 531

[13]

Chen F., Takagi M., Imura T., Kawamura Y., Kato H., Inoue A. Crystallization of Zr55Al10Ni5Cu30 bulk metallic glass composites containing ZrC particles. Mater. Trans., 2002, 43(1): 1

[14]

Ishikuro M., Wagatsuma K. Separation and determination of zirconium carbide in Zr50Al10Ni5Cu30 bulk metallic glass matrix composites containing ZrC particles. Mater. Trans., 2010, 51(2): 366

[15]

Liu C.T., Lu Z.P. Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics, 2005, 13(3–4): 415

[16]

Wang W.H. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci., 2007, 52(4): 540

[17]

H.J. Wang, G.J. Shiflet, S.J. Poon, K. Matsuda, and S. Ikeno, The role of Y/lanthanides on the glass forming ability of amorphous steel, Appl. Phys. Lett., 91(2007), No.14, art. no.141910.

[18]

Lu Z.P., Liu C.T. Role of minor alloying additions in formation of bulk metallic glasses: a review. J. Mater. Sci., 2004, 39(12): 3965

[19]

Peng W.J., Zhang Y. Micro-alloying of yttrium in Zr-based bulk metallic glasses. Prog. Nat. Sci. Mater. Int., 2011, 20(1): 46

[20]

Zhang Y., Zhou Y.J., Hui X.D., Wang M.L., Chen G.L. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G, 2008, 51(4): 427

[21]

Wang S., Zhang Y. Shear-band spacing controlled by Bridgman solidification in dendrite/BMG composites. Sci. China Ser. G, 2009, 52(10): 1632

[22]

Qiao J.W., Zhang Y., Li J.H., Chen G.L. Strain rate response of a Zr-based composite fabricated by Bridgman solidification. Int. J. Miner. Metall. Mater., 2010, 17(2): 214

[23]

Zhang X.C., Zhang Y., Chen X.H., Chen G.L. Bulk metallic glass rings prepared by a modified water quenching method. Int. J. Miner. Metall. Mater., 2009, 16(1): 108

[24]

Yu R. H. The empirical electron theory of solids and molecules. Chin. Sci. Bull., 1978, 23(4): 217.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/