A model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides using optical basicity

Teng Zhang , Xiao-jun Hu , Qi-feng Shu , Kuo-Chih Chou

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 685 -688.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (8) : 685 -688. DOI: 10.1007/s12613-012-0614-2
Article

A model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides using optical basicity

Author information +
History +
PDF

Abstract

A simple model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides was developed using optical basicity only. In this model, the temperature dependence of the rate constant can be described by the Arrhenius law, and the activation energy can be expressed with a linear function of the slag’s optical basicity. The model was applied to some molten slag systems, such as FeO, FeO-CaO, FeO-SiO2, FeO-Na2O, FeO-CaO-SiO2, FeO-SiO2-P2O5, FeO-SiO2-Na2O, and FeO-CaO-SiO2-P2O5. A comparison between the predicted results and measured data showed that the model worked well.

Keywords

smelting / rate constants / slag / iron oxides / optical basicity / models

Cite this article

Download citation ▾
Teng Zhang, Xiao-jun Hu, Qi-feng Shu, Kuo-Chih Chou. A model for estimating the rate constant between CO2-CO gas and molten slag containing iron oxides using optical basicity. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 685-688 DOI:10.1007/s12613-012-0614-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-rahaiby S.K., Sasaki Y., Gaskell D.R., Belton G.R. Interfacial rates of reaction of CO2 with liquid iron silicates, silica-saturated manganese silicates, and some calcium iron silicates. Metall. Trans. B, 1986, 17(2): 307

[2]

Barati M., Coley K.S. Kinetics of CO2-CO reaction with CaO-SiO2-FeOx melts. Metall. Mater. Trans. B, 2005, 36(2): 169

[3]

Sasaki Y., Hara S., Gaskell D.R., Belton G.R. Isotope exchange studies of the rate of dissociation on liquid iron oxides and CaO-saturated calcium ferrites. Metall. Trans. B, 1984, 15(3): 563

[4]

Tetsuya N., Yasutaka I., Shiro B.Y. Effect of additives on the rate of reduction of liquid iron oxide with CO. Testu-to-Hagane, 1989, 75(1): 74.

[5]

Byrne M., Belton G.R. Studies of the interfacial kinetics of the reaction of nitrogen with liquid iron by the 15N-14N isotope exchange reaction. Metall. Trans. B, 1983, 14(3): 441

[6]

Glaws P.C., Fruehan R.J. The kinetics of the nitrogen reaction with liquid iron-sulfur alloys. Metall. Trans. B, 1985, 16(3): 551

[7]

Sun S., Belton G.R. The effect of surfactants on the interfacial rates of reaction of CO2 and CO with liquid iron oxide. Metall. Trans. B, 1998, 29(1): 137

[8]

Barati M., Coley K.S. A comprehensive kinetic model for the CO-CO2 reaction with iron oxide containing slag. Metall. Trans. B, 2006, 37(1): 61

[9]

Gaskell D.R. Optical basicity and the thermodynamic properties of slags. Metall. Trans. B, 1989, 20(1): 113

[10]

Zhang G.H., Chou K.C. Simple method for estimating the electrical conductivity of oxide melts with optical basicity. Metall. Mater. Trans. B, 2010, 41(1): 131

[11]

C.R. Masson, The chemistry of slags: an overview, [in] Proceedings of the 2nd International Symposium on Metallurgical Slags and Fluxes, Warrendale, 1984, p.3.

[12]

Urbain G. Viscosity estimation of slags. Steel Res., 1987, 58(3): 111.

[13]

R.P. Goel and H.H. Kellogg, Mathematical description of the thermochemical properties of iron-silicate slags containing lime, [in] Proceedings of the 2nd International Symposium on Metallurgical Slags and Fluxes, Warrendale, 1984, p.347.

[14]

Yang L., Belton G.R. Iron redox equilibria in CaO-Al2O3-SiO2 and MgO-CaO-Al2O3-SiO2 slags. Metall. Mater. Trans. B, 1998, 29(4): 837

[15]

Ray H.S., Pal S. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmaking Steelmaking, 2004, 31(2): 125

[16]

Nakamura T., Ueda Y., Toguri J.M. A new development of the optical basicity. J. Jpn. Inst. Met., 1986, 50(5): 456.

[17]

Matsuura H., Ishida I., Tsukihashi F. Effect of P2O5 addition on the rate of CO2 dissociation on the surface of FetO-base molten oxides. ISIJ Int., 2004, 44(9): 1494

[18]

Matsuura H., Tsukihashi F. Surface active effect of Na2O on the rate of CO2 dissociation on the surface of molten FeOx-Na2O and FeOx-SiO2-Na2O systems. ISIJ Int., 2005, 45(7): 1035

[19]

Li Y., Ratchev I.P. Rate of interfacial reaction between molten CaO-SiO2-Al2O3-FexO and CO-CO2. Metall. Mater. Trans. B, 2002, 33(5): 651

[20]

Hu X. J., Matsuura H., Tsukihashi F. Interfacial reaction between CO2-CO gas and molten iron oxide containing P2O5. Metall. Mater. Trans. B, 2006, 37(3): 395

[21]

Sun S., Sasaki Y., Belton G.R. On the interfacial rate of reaction of CO2 with a calcium ferrite melt. Metall. Trans. B, 1988, 19(6): 959

[22]

Zhang L., Jahanshahi S. Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO, and MnO. Metall. Mater. Trans. B, 1998, 29(1): 177

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/