Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution

Hao Song , Bin Liang , Li Lü , Pan Wu , Chun Li

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (7) : 642 -650.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (7) : 642 -650. DOI: 10.1007/s12613-012-0607-1
Article

Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution

Author information +
History +
PDF

Abstract

The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfuric acid solution was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfuric acid, and the seed dosage of rutile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100°C. When the hydrolysis rate of titanium expressed by TiO2 was more than or equal to 0.04 g/(L·min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L·min). With the hydrolysis rate between 0.02 and 0.03 g/(L·min), the hydrolysate contained almost equal magnitude of rutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.

Keywords

titanium dioxide / titanyl sulfate / sulfuric acid / hydrolysis / anatase / rutile

Cite this article

Download citation ▾
Hao Song, Bin Liang, Li Lü, Pan Wu, Chun Li. Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(7): 642-650 DOI:10.1007/s12613-012-0607-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69

[2]

Muneer M., Das S., Manilal V.B., Haridas A. Photocatalytic degradation of waste-water pollutants: titanium dioxide-mediated oxidation of methyl vinyl ketone. J. Photochem. Photobiol. A, 1992, 63(1): 107

[3]

Pichat P., Disdier J., Hoang-Van C., Mas D., Goutailler G., Gaysse C. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today, 2000, 63(2–4): 363

[4]

Barbé C.J., Arendse F., Comte P., Jirousek M., Lenzmann F., Shklover V., Grätzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc., 1997, 80(12): 3157

[5]

Bacsa R.R., Gratzel M. Rutile formation in hydrothermally crystallized nanosized titania. J. Am. Ceram. Soc., 1996, 79(8): 2185

[6]

Zhang H.Z., Banfield J.F. Polymorphic transformations and particle coarsening in nanocrystalline titania ceramic powders and membranes. J. Phys. Chem. C, 2007, 111(18): 6621

[7]

Zhang H.Z., Banfield J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B, 2000, 104(15): 3481

[8]

Zhang H.Z., Banfield J.F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem., 1998, 8(9): 2073

[9]

Vasudevan A.K., Rao P.P., Ghosh S.K., Anilkumar G.M., Damodaran A.D., Warrier K.G.K. Effect of addition of silver on anatase-rutile transformation as studied by impedance spectroscopy. J. Mater. Sci. Lett., 1997, 16(1): 8.

[10]

Ranade M.R., Navrotsky A., Zhang H.Z., Banfield J.F., Elder S.H., Zaban A., Borse P.H., Kulkarni S.K., Doran G.S., Whitfield H.J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA, 2002, 99, 6476

[11]

Naicker P.K., Cummings P.T., Zhang H.Z., Banfield J.F. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B, 2005, 109(32): 15243

[12]

Kumar K.N.P. Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites. Scripta Metall. Mater., 1995, 32(6): 873

[13]

Gribb A.A., Banfield J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral., 1997, 82(7–8): 717.

[14]

Bregani F., Casale C., Depero L.E., Natali-sora I., Robba D., Sangaletti L., Toledo G.P. Temperature effects on the size of anatase crystallites in Mo-TiO2 and W-TiO2 powders. Sens. Actuators B, 1996, 31(1–2): 25

[15]

Yanagisawa K., Ovenstone J. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B, 1999, 103(37): 7781

[16]

Finnegan M.P., Zhang H.Z., Banfield J.F. Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C, 2007, 111(5): 1962

[17]

Santacesaria E., Tonello M., Storti G., Pace R.C., Carra S.J. Kinetics of titaniumdioxideprecipitation by thermalhydrolysis. J. Colloid Interface Sci., 1986, 111(1): 44

[18]

Matijević E., Budnick M., Meites L. Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution. J. Colloid Interface Sci., 1977, 61(2): 302

[19]

Bekkerman L.I., Dobrovol’skii I.P., Ivakin A.A. Effect of the composition of titanium(IV) solution and conditions of precipitation on the structure of the solid phase. Russ. J. Inorg. Chem., 1976, 21, 223.

[20]

Qin W., Liu J.J., Zuo S.L., Yu Y.C., Hao Z.P. Solvothermal synthesis of nanosized TiO2 particles with different crystal structures and their photocatalytic activities. J. Inorg. Mater., 2007, 22(5): 931.

[21]

Park S.D., Cho Y.H., Kim W.W., Kim S.J. Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature. J. Solid State Chem., 1999, 146(1): 230

[22]

Hixson A.W., Stetkewicz J.D. Titanium sulfate solutions. Ind. Eng. Chem., 1940, 32(7): 1009

[23]

Hixson A.W., Plechner W.W. Hydrated titanium oxide, thermal precipitation from titanium sulfate solutions. Ind. Eng. Chem., 1933, 25(3): 262

[24]

Hixson A.W., Fredrickson R.E.C. Hydrolysis of titanyl sulfate solutions. Ind. Eng. Chem., 1945, 37(7): 678

[25]

Jelks B. Titanium: Its Occurrence, Chemistry and Technology, 1966, New York, Ronald Press, 168.

[26]

Amigó J., Clausell J., Esteve V., Delgado J.M., Reventós M.M., Ochando L.E., Debaerdemaeker T., Martí F. X-ray powder diffraction phase analysis and thermomechanical properties of silica and alumina porcelains. J. Eur. Ceram. Soc., 2004, 24(1): 75

[27]

Hill R.J., Howard C.J. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst., 1987, 20(6): 467

[28]

Kirwan L.J., Deeney F.A., Croke G.M., Hodnett K. Characterisation of various Jamaican bauxite ores by quantitative Rietveld X-ray powder diffraction and 57Fe Mossbauer spectroscopy. Int. J. Miner. Process., 2009, 91(1–2): 14

[29]

Lutterotti L., Scardi P. Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Cryst., 1990, 23(4): 246

[30]

Rietveld H. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst., 1967, 22(1): 151

[31]

Bourikas K., Hiemstra T., Van Riemsdijk W.H. Ion pair formation and primary charging behavior of titanium oxide (anatase and rutile). Langmuir, 2001, 17(3): 749

[32]

Katerska B., Exner G., Perez E., Krasteva M.N. Cooling rate effect on the phase transitions in a polymer liquid crystal: DSC and real-time MAXS and WAXD experiments. Eur. Polym. J., 2010, 46(7): 1623

[33]

Andronis V., Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non Cryst. Solids, 2000, 271(3): 236

[34]

Yanagisawa K., Ovenstone J. Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. J. Phys. Chem. B, 1999, 103(37): 7781

[35]

Wang C., Deng Z.X., Zhang G.H., Fan S.S., Li Y.D. Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol., 2002, 125(1): 39

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/