Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO2 and Pb/PbO2 electrodes

Nasser Abu Ghalwa , Hassan Tamos , Mohamed ElAskalni , Abed Rhman El Agha

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (6) : 561 -566.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (6) : 561 -566. DOI: 10.1007/s12613-012-0596-0
Article

Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO2 and Pb/PbO2 electrodes

Author information +
History +
PDF

Abstract

Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon substrates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOCl) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOCl generation, including current density, pH values, conductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOCl.

Keywords

sodium hypochlorite / sodium chloride / lead oxide / electrodeposition / electrodes

Cite this article

Download citation ▾
Nasser Abu Ghalwa, Hassan Tamos, Mohamed ElAskalni, Abed Rhman El Agha. Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO2 and Pb/PbO2 electrodes. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(6): 561-566 DOI:10.1007/s12613-012-0596-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Connell G.F. The Chlorination/Chloramination Handbook: Water Disinfection Series, 1996, Denver, American Water Works Association

[2]

US Environmental Protection Agency, Alternative Disinfectants and Oxidants Guidance Manual, EPA 815-R-99-014, USA, 1999.

[3]

Yang C.H., Lee C.C., Wen T.C. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater. J. Appl. Electrochem., 2000, 30, 1043

[4]

Rajkumar D., Kim J.G. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J. Hazard. Mater., 2006, 136, 203

[5]

Scott K. Electrochemical Processes for Clean Technology, 1995, Cambridge, The Royal Society of Chemistry, 189.

[6]

Pletcher D., Walsh F.C. Industrial Electrochemistry, 1990 2nd. Ed. London, Chapman and Hall Ltd.

[7]

Rajkumar D., Kim J.G., Palanivelu K. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment. Chem. Eng. Technol., 2005, 28, 98

[8]

K. Asokan and K. Subramanian, Design of a tank electrolyser for in-situ generation of NaClO, [in] Proceedings of the World Congress on Engineering and Computer Science, San Francisco, 2009, p.139.

[9]

Gerhardt D.E., Williams H.N. Factors affecting the stability of sodium hypochlorite solutions used to disinfect dental impressions. Quintessence Int., 1991, 22, 587.

[10]

Cottone J.A., Molinari J.A. Selection for dental practice of chemical disinfectants and sterilants for hepatitis and AIDS. Aust. Dent. J., 1987, 32, 368

[11]

Pişkin B., Türkün M. Stability of various sodium hypochlorite solutions. J. Endodont., 1995, 21, 253

[12]

Gordon G., Adam L.C., Bubnis B.P., Kuo C., Cushing R.S., Sakaji R.H. Predicting liquid bleach decomposition. J. Am. Water Works Assoc., 1997, 89, 142.

[13]

Fabian T.M., Walker S.E. Stability of sodium hypochlorite solutions. Am. J. Hosp. Pharm., 1982, 39, 1016.

[14]

Pappalardo G., Tanner F., Roussianos D., Pannatier A. Efficacy and stability of two chlorine-containing antiseptics. Drugs Exp. Clin. Res., 1986, 12, 905.

[15]

Johnson B.R., Remeikis N.A. Effective shelf-life of prepared sodium hypochlorite. J. Endodont., 1993, 19, 40

[16]

Gambarini G. Chemical stability of heated sodium hypochlorite endodontic irrigants. J. Endodont., 1998, 24, 432

[17]

Krstajić N., Nakić V., Spasojević M. Hypochlorite production: I. A model of the cathodic reactions. J. Appl. Electrochem., 1987, 17, 77

[18]

Cheng C.Y., Kelsall G.H. Model of hypochlorite production in electrochemical reactors with plate and porous anode. J. Appl. Electrochem., 2007, 37, 1203

[19]

Bashtan S.Y., Goncharuk V.V., Chebotareva R.D., Belyakov V.N., Linkov V.M. Production of sodium hypochlorite in an electrolyser equipped with a ceramic membrane. Desalination, 1999, 126, 77

[20]

Bashtan S.Y., Goncharuk V.V., Chebotareva R.D., Linkov V.M. Sodium hypochlorite production in an electrolyzing cell with a ceramic membrane. Russ. J. Electrochem., 2001, 37, 782

[21]

Petkov L., Todorov T., Dardanova L., Boshnakov K. Mathematical modelling of the process of electrochemical production of NaClO from diluted chloride solutions. J. Univ. Chem. Technol. Metall., 2006, 41, 133.

[22]

De Pauli C. P., Trasatti S. Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution. J. Electroanal. Chem., 2002, 538–539, 145.

[23]

de Oliveira-Sousa A., da Silva M.A.S., MacHado S.A.S., Avaca L.A., de Lima-Neto P. Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes. Electrochim. Acta, 2000, 45, 4467

[24]

Hu C.C., Lee C.H., Wen T.C. Oxygen evolution and hypochlorite production on Ru-Pt binary oxides. J. Appl. Electrochem., 1996, 26, 72

[25]

Yang C.H. Hypochlorite production on Ru-Sn binary oxide electrode and its application in treatment of dye wastewater. Can. J. Chem. Eng., 1999, 77, 1161

[26]

Polacro A.M., Palmas S., Renoldi F., Mascia M. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J. Appl. Electrochem., 1999, 29, 147

[27]

Narasimham K.C., Udupa H.V.K. Preparation and applications of graphite substrate lead dioxide (GSLD) anode. J. Electrochem. Soc., 1976, 123, 1294

[28]

Lieu V.T., Kalbus G.E. Analysis of hypochlorite in commercial liquid bleaches by coulometric titration. J. Chem. Educ., 1975, 52, 335

[29]

Pavlović O., Krstajić N.V., Spasojević M.D. Formation of bromates at a RuO2/TiO2 titanium anode. Surf. Coat. Technol., 1988, 34, 177

[30]

St-Pierre J., Wragg A.A. Behavior of electrogenerated hydrogen and oxygen bubbles in narrow gap cells: Part II. Application in chlorine production. Electrochim. Acta, 1993, 38, 1705

[31]

Kraft A., Stadelmann M., Blaschke M., Kreysig D., Sandt B., Schröder F., Rennau J. Electrochemical water disinfection: Part 1. Hypochlorite production from very dilute chloride solutions. J. Appl. Electrochem, 1999, 29, 861.

[32]

Ronco C., Mishkin G.J. Disinfection by sodium hypochlorite: dialysis application. Contrib Nephrol., 2007, 154, 7.

[33]

Morita M., Iwakura C., Tamura H. The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim. Acta, 1977, 22, 325

[34]

Kelsall G.H. Hypochlorite electro-generation: I. A parametric study of a parallel plate electrode cell. J. Appl. Electrochem., 1984, 14, 177

[35]

P.F. Chao, J. Borchardt, M. Priest, and Z. Liu, On-site chlorine generation feasibility study, [in] Proceedings of the Water Environment Federation, 2007, p.943.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/