Effect of Sm-doping on the morphology and magnetic properties of radio frequency magnetron sputtered Ni-Mn-Ga films

Feng-hua Chen , Min-gang Zhang , Yue-sheng Chai , Chang-wei Gong

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (6) : 555 -560.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (6) : 555 -560. DOI: 10.1007/s12613-012-0595-1
Article

Effect of Sm-doping on the morphology and magnetic properties of radio frequency magnetron sputtered Ni-Mn-Ga films

Author information +
History +
PDF

Abstract

Ni55.5Mn21Ga23.5 and Ni54Mn22Ga23Sm1 films were prepared by radio frequency (RF) magnetron sputtering. The effect of Sm dopant on the morphologic and magnetic properties of Ni55.5Mn21Ga23.5 films was investigated. Sm doping can refine the particle size of the films from 100 to 60 nm, and further grain growth is not occurs even after annealing at 1073 K for 3.6 ks. Compared to Ni55.5Mn21Ga23.5 films, Sm-doped Ni54Mn22Ga23Sm1 films are easier to be magnetized and have a lower martensitic transformation temperature. In addition, the Curie temperature can also be adjusted, decreasing from 350 to 325 K after Sm doping. Martensitic transformation is not observed in the Sm-free films, which is close to the Curie temperature in the Sm-doped films, giving rise to the overlap of the structural and magnetic transition temperatures.

Keywords

magnetic films / samarium / doping / magnetron sputtering / martensitic transformation / magnetic transition temperature / magnetic properties / rare earths

Cite this article

Download citation ▾
Feng-hua Chen, Min-gang Zhang, Yue-sheng Chai, Chang-wei Gong. Effect of Sm-doping on the morphology and magnetic properties of radio frequency magnetron sputtered Ni-Mn-Ga films. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(6): 555-560 DOI:10.1007/s12613-012-0595-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ullakko K., Huang J.K., Kantner C., O’Handley R.C., Kokorin V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett., 1996, 69(13): 1966

[2]

Murray S.J., Marioni M., Allen S.M., O’Handley R.C., Lograsso T.A. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett., 2000, 77(6): 886

[3]

Sozinov A., Likhachev A.A., Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett., 2002, 80(10): 1746

[4]

Ezera Y., Sozinov A., Kimmel G., Eteläniemi V., Glavatskaya N.I., D’Anci A., Podgursky V., Lindroos V.K., Ullakko K. Magnetic shape memory (MSM) effect in textured polycrystalline Ni2MnGa. Proceedings of SPIE — The International Society for Optical Engineering, 1999, 3675, 244

[5]

Dong J.W., Chen L.C., Palmstrøm C.J., James R.D., Mckernan S. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett., 1999, 75(10): 1443

[6]

Y.P. Zhang, R.A. Hughes, J.F. Britten, J.S. Preston, G.A. Botton, and M. Niewczas, Self-activated reversibility in the magnetically induced reorientation of martensitic variants in ferromagnetic Ni-Mn-Ga films, Phys. Rev. B, 81(2010), No.5, art. No.054406.

[7]

Hakola A., Heczko O., Jaakkola A., Kajava T., Ullakko K. Pulsed laser deposition of Ni-Mn-Ga thin films on silicon. Appl. Phys. A, 2004, 79(4–6): 1505.

[8]

Bernard F., Delobelle P., Rousselot C., Hirsinger L. Microstructural, mechanical and magnetic properties of shape memory alloy Ni55Mn23Ga22 thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films, 2009, 518(1): 399

[9]

Chernenko V.A., Ohtsuka M., Kohl M., Khovailo V.V., Takagi T. Transformation behavior of Ni-Mn-Ga thin films. Smart Mater. Struct., 2005, 14(5): S245

[10]

V.A. Chernenko, V. Golub, J.M. Barandiarán, O.Y. Salyuk, F. Albertini, L. Righi, S. Fabbrici, and M. Ohtsuka, Magnetic anisotropies in Ni-Mn-Ga films on MgO (001) substrates, Appl. Phys. Lett., 96(2010), No.4, art. No.042502.

[11]

V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alárcos, V.A. Chernenko, and M. Ohtsuka, Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni-Mn-Ga thin films, Appl. Phys. Lett., 95(2009), No.14, art. No.141908.

[12]

Backen A., Yeduru S.R., Kohl M., Baunack S., Diestel A., Holzapfel B., Schultz L., Fähler S. Comparing properties of substrate-constrained and freestanding epitaxial Ni-Mn-Ga films. Acta Mater., 2010, 58(9): 3415

[13]

Buschbeck J., Niemann R., Heczko O., Thomas M., Schultz L., Fähler S. In situ studies of the martensitic transformation in epitaxial Ni-Mn-Ga films. Acta Mater., 2009, 57(8): 2516

[14]

Thomas M., Heczko O., Buschbeck J., Lai Y.W., McCord J., Kaufmann S., Schultz L., Fähler S. Stray-field-induced actuation of free-standing magnetic shape-memory films. Adv. Mater., 2009, 21(36): 3708

[15]

Guo S.H., Zhang Y.H., Zhao Z.Q., Li J.L., Wang X.L. Martensitic transformation and magnetic-field-induced strain in Ni-Mn-Ga-RE (RE = Tb, Sm) alloys. J. Rare Earths, 2004, 22(5): 632.

[16]

Zhao Z.Q., Xiong W., Wu S.X., Wang X.L. Phase transformation behaviors and effects of terbium in polycrystalline Ni-Mn-Ga magnetic shape memory alloys. J. Rare Earths, 2004, 22(4): 567.

[17]

Liu C. Phase Transformation Behavior and Properties of Magnetron Sputtered Ni-Mn-Ga Alloy Thin Films, 2008, Harbin, Harbin Institute of Technology, 67.

[18]

Jin X., Marioni M., Bono D., Allen S.M., O’Handley R.C. Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration. J. Appl. Phys., 2002, 91(10): 8222

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/