One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers

Jian Xie , Wen-tao Song , Gao-shao Cao , Xin-bing Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (6) : 542 -548.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (6) : 542 -548. DOI: 10.1007/s12613-012-0593-3
Article

One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers

Author information +
History +
PDF

Abstract

A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs using Sb2O3/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical performance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precursor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.

Keywords

composite materials / antimony alloys / carbon fibers / chemical vapor deposition / catalytic growth / network structures / lithium batteries / anodes

Cite this article

Download citation ▾
Jian Xie, Wen-tao Song, Gao-shao Cao, Xin-bing Zhao. One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(6): 542-548 DOI:10.1007/s12613-012-0593-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alcántara R., Fernández-Madrigal F.J., Lavela P., Tirado J.L., Jumas J.C., Olivier-Fourcade J. Electrochemical reaction of lithium with the CoSb3 skutterudite. J. Mater. Chem., 1999, 9(10): 2517

[2]

Johnson C.S., Vaughey J.T., Thackeray M.M., Sarakonsri T., Hackney S.A., Fransson L., Edström K., Thomas J.O. Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries. Electrochem. Commun., 2000, 2(8): 595

[3]

Larcher D., Beaulieu L.Y., Mao O., George A.E., Dahn J.R. Study of the reaction of lithium with isostructural A2B and various AlxB alloys. J. Eletrochem. Soc., 2000, 147(5): 1703

[4]

Fernández-Madrigal F.J., Lavela P., Pérez-Vicente C., Tirado J.L. Electrochemical reactions of polycrystalline CrSb2 in lithium batteries. J. Electroanal. Chem., 2001, 501(1–2): 205.

[5]

Zhang L.J., Zhao X.B., Jiang X.B., Lv C.P., Cao G.S. Study on the insertion behaviors of lithium-ions into CoFe3Sb12 based electrodes. J. Power Sources, 2001, 94(1): 92

[6]

Wachtler M., Winter M., Besenhard J.O. Anodic materials for rechargeable Li-batteries. J. Power Sources, 2002, 105(2): 151

[7]

Monconduit L., Jumas J.C., Alcántara R., Tirado J.L., Pérez Vicente C. Evaluation of discharge and cycling properties of skutterudite-type Co1−2yFeyNiySb3 compounds in lithium cells. J. Power Sources, 2002, 107(1): 74

[8]

Tarascon J.M., Morcrette M., Dupont L., Chabre Y., Payen C., Larcher D., Pralong V. On the electrochemical reactivity mechanism of CoSb3 vs. lithium. J. Electrochem. Soc., 2003, 150(6): A732

[9]

Honda H., Sakaguchi H., Tanaka I., Esaka T. Anode behaviors of magnesium-antimony intermetallic compound for lithium secondary battery. J. Power Sources, 2003, 123(2): 216

[10]

Pralong V., Leriche J.B., Beaudoin B., Naudin E., Morcrette M., Tarascon J.M. Electrochemical study of nanometer Co3O4, CO, CoSb3 and Sb thin films toward lithium. Solid State Ionics, 2004, 166(3–4): 295

[11]

Ionica C.M., Lippens P.E., Fourcade J.O., Jumas J.C. Study of Li insertion mechanisms in transition metal antimony compounds as negative electrodes for Li-ion battery. J. Power Sources, 2005, 146(1–2): 478

[12]

Reddy M.A., Varadaraju U.V. NbSb2 as an anode material for Li-ion batteries. J. Power Sources, 2006, 159(1): 336

[13]

Stjerndahl M., Bryngelsson H., Gustafsson T., Vaughey J.T., Thackeray M.M., Edströn K. Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries. Electrochim. Acta, 2007, 52(15): 4947

[14]

Bryngelsson H., Eskhult J., Nyholm L., Edströn K. Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim. Acta, 2008, 53(24): 7226

[15]

Park C.M., Sohn H.J. Antimonides (FeSb2, CrSb2) with orthorhombic structure and their nanocomposites for rechargeable Li-ion batteries. Electrochim. Acta, 2010, 55(17): 4987

[16]

Shi L.H., Li H., Wang Z.X., Huang X.J., Chen L.Q. Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. J. Mater. Chem., 2001, 11(5): 1502

[17]

Dailly A., Willmann P., Billaud D. Synthesis, characterization and electrochemical performances of new antimony-containing graphite compounds used as anodes for lithium-ion batteries. Electrochim. Acta, 2002, 48(3): 271

[18]

Wang K., He X.M., Ren J.G., Wang L., Jiang C.Y., Wan C.R. Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides. Electrochim. Acta, 2006, 52(3): 1221

[19]

Park C.M., Yoon S., Lee S.I., Kim J.H., Jung J.H., Sohn H.J. High-rate capability and enhanced cyclability of antimony-based composites for lithium rechargeable batteries. J. Electrochem. Soc., 2007, 154(10): A917

[20]

Park C.M., Sohn H.J. Novel antimony/aluminum/carbon nanocomposite for high-performance rechargeable lithium batteries. Chem. Mater., 2008, 20(9): 3169

[21]

Yoon S., Manthiram A. Sb-MOx-C (M=Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries. Chem. Mater., 2009, 21(16): 3898

[22]

Park C.M., Sohn H.J. A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Electrochim. Acta, 2009, 54(26): 6367

[23]

Park C.M., Sohn H.J. Electrochemical characteristics of TiSb2 and Sb/TiC/C nanocomposites as anodes for rechargeable Li-ion batteries. J. Electrochem. Soc., 2010, 157(1): A46

[24]

Chen W.X., Lee J.Y., Liu Z.L. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochem. Commun., 2002, 4(3): 260

[25]

Chen W.X., Lee J.Y., Liu Z.L. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon, 2003, 41, 959.

[26]

Xie J., Zhao X.B., Cao G.S., Zhao M.J. Electrochemical performance of CoSb3/MWNTs nanocomposite prepared by in situ solvothermal synthesis. Electrochim. Acta, 2005, 50(13): 2725

[27]

NuLi Y.N., Yang J., Jiang M.S. Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion batteries. Mater. Lett., 2008, 62(14): 2092

[28]

Egashira M., Takatsuji H., Okada S., Yamaki J. Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. J. Power Sources, 2002, 107(1): 56

[29]

Naoi K., Ishimoto S., Isobe Y., Aoyagi S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources, 2010, 195(18): 6250

[30]

Wolf H., Pajkic Z., Gerdes T., Willert-Porada M. Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition. J. Power Sources, 2009, 190(1): 157

[31]

Utsunomiya H., Nakajima T., Ohzawa Y., Mazej Z., Žemva B., Endo M. Influence of conductive additives and surface fluorination on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4). J. Power Sources, 2010, 195(19): 6805

[32]

Ge S.S., Wang Q.Y., Li J.Y., Shao Q., Wang X.J. Controllable synthesis and formation mechanism of bow-tie-like Sb2O3 nanostructures via a surfactant-free solvothermal route. J. Alloys Compd., 2010, 494(1–2): 169

[33]

Kim C., Yang K.S., Kojima M., Yoshida K., Kim Y.J., Kim Y.A., Endo M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater., 2006, 16(18): 2393

[34]

Caballero A., Hernán L., Morales J., Olivares-Marín M., Gómez-Serrano V. Suppressing irreversible capacity in low cost disordered carbons for Li-ion batteries. Electrochem. Solid State Lett., 2009, 12(8): A167

[35]

Yin J., Wada M., Tanase S., Sakai T. Nanocrystalline Ag-Fe-Sn anode materials for Li-ion batteries. J. Electrochem. Soc., 2004, 151(4): A583

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/