Synthesis of BiOCl photocatalyst by a low-cost, simple hydrolytic technique and its excellent photocatalytic activity

Yan Wang , Zhu-qing Shi , Cai-mei Fan , Xiao-gang Hao , Guang-yue Ding , Yun-fang Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (5) : 467 -472.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (5) : 467 -472. DOI: 10.1007/s12613-012-0581-7
Article

Synthesis of BiOCl photocatalyst by a low-cost, simple hydrolytic technique and its excellent photocatalytic activity

Author information +
History +
PDF

Abstract

A novel photocatalyst, bismuth oxychloride (BiOCl) micro-nano particles with a fine ferrite plate structure, was prepared by a low-cost, simple hydrolytic method. The as-prepared BiOCl was characterized by scanning electron microscopy (SEM), thermogravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectra (DRS). The effects of preparation conditions such as sodium dodecyl benzene sulfonate (SDBS) dispersant, HCl concentration, and heat treatment temperature on BiOCl performances were investigated. Moreover, its photocatalytic activity was evaluated on the degradation of methylene orange (MO) and was compared with that of TiO2 (P25). The experimental results confirmed that BiOCl micro-nano particles prepared with SDBS, the HCl concentration of 1.5 mol/L, and the heat treatment temperature of 80°C exhibited the best performance for the photodegradation of MO solution, and they showed good stability and better photocatalytic activity than P25 photocatalyst.

Keywords

bismuth compounds / bismuth oxychloride / nanoparticles / photocatalysis / xenon light / degradation / methylene orange (MO)

Cite this article

Download citation ▾
Yan Wang, Zhu-qing Shi, Cai-mei Fan, Xiao-gang Hao, Guang-yue Ding, Yun-fang Wang. Synthesis of BiOCl photocatalyst by a low-cost, simple hydrolytic technique and its excellent photocatalytic activity. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(5): 467-472 DOI:10.1007/s12613-012-0581-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Neppolian B., Choi H.C., Sakthivel S., Arabindoo B., Murugesan V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater., 2002, 89, 303

[2]

Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37

[3]

Bizani E., Fytianos K., Poulios I., Tsiridis V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater., 2006, 136(1): 85

[4]

Zhao W., Chen C.C., Ma W.H., Zhao J.C., Wang D.X., Hidaka H., Serpone N. Efficient photoinduced conversion of an azo dye on hexachloroplatinate(IV)-modified TiO2 surfaces under visible light irradiation: a photosensitization pathway. Chem. Eur. J., 2003, 9, 3292

[5]

Choi W.Y., Hong S.J., Chang Y.S., Choi Y.M. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation. Environ. Sci. Technol., 2000, 34, 4810

[6]

Yoong L.S., Chong F.K., Dutta B.K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 2009, 34(10): 1652

[7]

Zhang M.L., An T.C., Fu J.M., Sheng G.Y., Wang X.M., Hu X.H., Ding X.J. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere, 2006, 64(3): 423

[8]

Gondal M.A., Chang X.F., Yamani Z.H. UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution. Chem. Eng. J., 2010, 165(1): 250

[9]

Chang X.F., Huang J., Cheng C., Sui Q., Sha W., Ji G.B., Deng S.B., Yu G. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: characterization and catalytic performance. Catal. Commun., 2010, 11(5): 460

[10]

Kim H.W., Lee J.W., Shim S.H. Study of Bi2O3 nanorods grown using the MOCVD technique. Sens. Actuators B, 2007, 126(1): 306

[11]

Fruth V., Ianculescu A., Berger D., Preda S., Voicu G., Tenea E., Popa M. Synthesis, structure and properties of doped Bi2O3. J. Eur. Ceram. Soc., 2006, 26(14): 3011

[12]

Jiang H.Q., Endo H., Natori H., Nagai M., Kobayashi K. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J. Eur. Ceram. Soc., 2008, 28(15): 2955

[13]

Zhang Z.J., Wang W.Z., Shang M., Yin W.Z. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J. Hazard. Mater., 2010, 177(1–3): 1013

[14]

Zhao X., Qu J.H., Liu H.J., Hu C. Photoelectrocatalytic degradation of triazine-containing azo dyes at Γ-Bi2MoO6 film electrode under visible light irradiation (λ>420 Nm). Environ. Sci. Technol., 2007, 41(19): 6802

[15]

Lin X.P., Huang F.Q., Wang W.D., Shan Z.C., Shi J.L. Methyl orange degradation over a novel Bi-based photocatalyst Bi3SbO7: Correlation of crystal structure to photocatalytic activity. Dyes Pigm., 2008, 78(1): 39

[16]

Yang Y.Q., Zhang G.K., Yu S.J., Shen X. Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9. Chem. Eng. J., 2010, 162(1): 171

[17]

Nakamura H., Ishii S., Yamada K., Matsushima S., Arai M., Kobayashi K. First-principles energy band calculation for CaBi2O4 with monoclinic structure. Mater. Chem. Phys., 2010, 121(1–2): 385

[18]

Huang W.L., Zhu Q.S. Electronic structures of related BiOX (X=F, Cl, Br, I) photocatalysts. Comput. Mater. Sci., 2008, 43(4): 1101

[19]

Zhang K.L., Liu C.M., Huang F.Q., Zheng C., Wang W.D. Study of the electronic structure and photocatalytic activity of BiOCl photocatalyst. Appl. Catal. B, 2006, 68(3–4): 125.

[20]

Zhang X., Ai Z.H., Jia F.L., Zhang L.Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C, 2008, 112(3): 747

[21]

Butler M.A. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys., 1977, 48(5): 1914

[22]

Tang J.W., Zou Z.G., Ye J.H. Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B, 2003, 107(51): 14265

[23]

Long M.C., Cai W.M., Cai J., Zhou B.X., Chai X.Y., Wu Y.H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B, 2006, 110(41): 20211

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/