Preparation of Al-Cu-Fe-(Sn,Si) quasicrystalline bulks by laser multilayer cladding

Li-ping Feng , Eric Fleury , Guo-sheng Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (5) : 434 -440.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (5) : 434 -440. DOI: 10.1007/s12613-012-0575-5
Article

Preparation of Al-Cu-Fe-(Sn,Si) quasicrystalline bulks by laser multilayer cladding

Author information +
History +
PDF

Abstract

(Al65Cu20Fe15)100−xSn x (x=0, 12, 20, 30) and Al57Si10Cu18Fe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the produced quasicrystalline bulks were investigated. It was found that the main phases in the Al65Cu20Fe15 sample were crystalline λ-Al13Fe4 and icosahedral quasicrystal together with a small volume fraction of θ-Al2Cu phase. The volume fraction of icosahedral phase decreased as the Sn content in the (Al65Cu20Fe15)100−xSn x samples increased owing to the formation of β-CuSn phase. The increase of Sn content improved the brittleness of the quasicrystal samples. The morphology of the solidification microstructure in the Al57Si10Cu18Fe15 sample changed from elongated shape to spherical shape due to the addition of Si. The nanohardness of the laser multilayer cladded quasicrystal samples was equal to that of the as-cast sample prepared by vacuum quenching. In terms of hardness, the laser cladded Al57Si10Cu18Fe15 quasicrystalline alloy has the highest value among all the investigated samples.

Keywords

quasicrystals / laser cladding / phase composition / morphology / mechanical properties / nanohardness

Cite this article

Download citation ▾
Li-ping Feng, Eric Fleury, Guo-sheng Zhang. Preparation of Al-Cu-Fe-(Sn,Si) quasicrystalline bulks by laser multilayer cladding. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(5): 434-440 DOI:10.1007/s12613-012-0575-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hirata A., Hirotsu Y., Amiya K., Inoue A. Quasicrystal-like structure and its crystalline approximant in an Fe48Cr15Mo14C15B6Tm2 bulk metallic glass. J. Alloys Compd., 2010, 504(Suppl.1): 185.

[2]

Li C.F., Inoue A. Precipitation of icosahedral quasicrystalline phase in metallic Zr65Al7.5Ni5Cu17.5Re5 glass. Mater. Lett., 2001, 50, 318

[3]

Tsai A.P., Inoue A., Masumoto T. Preparation of a new Al-Cu-Fe quasicrystal with large grain sizes by rapid solidification. J. Mater. Sci. Lett., 1987, 6, 1403

[4]

Joulaud J.L., Bernardini J., Gas P., Bergman C., Dubois J. M., Calvayrac Y., Gratias D. Volume and grain-boundary self-diffusion of Fe in Al-Cu-Fe icosahedral quasicrystals. Phil. Mag. A, 1997, 75, 1287

[5]

Shield J.E., Kramer M.J. Deformation characteristics of quasicrystalline Al-Cu-Fe alloys. J. Mater. Res., 1997, 12, 2043

[6]

Song S.G., Kim K.B., Fleury E., Kim W.T., Kim D.H. On the role of carbon in the formation and properties of hot pressed icosahedral Al-Cu-Fe phase. J. Mater. Sci. Lett., 2001, 20, 1293

[7]

Sexton L., Lavin S., Byrne G., Kennedy A. Laser cladding of aerospace materials. J. Mater. Process. Technol., 2002, 122, 63

[8]

G.K. Lewis, R.B. Nemec, J.O. Milewski, D.L. Thoma, M.R. Barbe, and D.A. Cremers, Directed light fabrication, [in] Proceedings of the ICALEO’94, Orlando, 1994, p.17.

[9]

Audebert F., Colaço R., Vilar R., Sirkin H. Laser cladding of aluminum-base quasicrystalline alloys. Scripta Mater., 1999, 40, 551

[10]

Yuan W.D. Research on the Manufacturing and Tribology Property of Quasicrystal Cladding, 2002, Beijing, Tsinghua University, 15.

[11]

Fleury E., Kim Y.C., Kim D.H., Kim D.H., Kim W.T. The toughening of Al-Cu-Fe(-B) quasicrystals by Sn particles. J. Non Cryst. Solids, 2004, 334–335, 449

[12]

Lee S.M., Kim B.H., Kim S.H., Fleury E., Kim W.T., Kim D.H. Effect of Si addition on the formability of the icosahedral quasicrystalline phase in an Al65Cu20Fe15 alloy. Mater. Sci. Eng. A, 2000, 294–296, 93.

[13]

Mou H.Q. Research on AlCuFe Quasicrystal Film, 2004, Beijing, Tsinghua University, 12.

[14]

Han B.J., Peng G.H., Zhang X.L. The fabrication of Al63Cu25Fe12 quasicrystalline by casting method. Jiangxi Nonferrous Met., 2009, 23, 34.

[15]

Feng L.P., Huang W.D., Chen D.R., Lin X., Yang H. Fabrication of directional solidification components of nickel-base superalloys by laser metal forming. J. Univ. Sci. Technol. Beijing, 2004, 11, 169.

[16]

Lee S.M., Jeon H.J., Kim B.H., Kim W.T., Kim D.H. Solidification sequence of the icosahedral quasicrystal forming Al-Cu-Fe alloys. Mater. Sci. Eng. A, 2001, 304–306, 871.

[17]

Yokoyama Y., Fukaura K., Sunada H. Preparation of large grained Al64Cu23Fe13 icosahedral quasicrystal directly from the melt. Mater. Trans. JIM, 2000, 41, 668.

[18]

Biswas K., Galun R., Mordike B.L., Chattopadhyay K. Laser cladding of quasicrystal forming Al-Cu-Fe on aluminum. J. Non Cryst. Solids, 2004, 334–335, 517

[19]

Feng L.P., Shao T.M., Jin Y.J., Fleury E., Kim D.H., Chen D.R. Temperature dependence of the tribological properties of laser re-melted Al-Cu-Fe quasicrystalline plasma sprayed coatings. J. Non Cryst. Solids, 2005, 351, 280

[20]

Shao T.M., Cao X.K., Fleury E., Kim D.H., Hua M., Se D. Tribological behavior of plasma sprayed Al-Cu-Fe+Sn quasicrystalline composite coatings. J. Non Cryst. Solids, 2004, 334–335, 466

[21]

Feng L.P., Shao T.M., Jin Y.I., Fleury E., Kim D.H., Chen D.R., Wei Y.G. Laser cladded AlCuFe+Sn quasicrystalline composite coatings. Trans. Nonferrous Met. Soc. China, 2005, 15, 432.

[22]

Fleury E., Lee J.H., Kim S.H., Kim W.T., Kim J.S., Kim D.H. Spark plasma sintering of Al-Si-Cu-Fe quasi-crystalline powder. Metall. Mater. Trans. A, 2003, 34, 841.

[23]

Köster U., Liu W., Liebertz H., Michel M. Mechanical properties of quasicrystalline and crystalline phases in Al-CuFe alloys. J. Non Cryst. Solids, 1993, 153–154, 446

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/