Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys

M. Izadinia , K. Dehghani

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (4) : 333 -338.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (4) : 333 -338. DOI: 10.1007/s12613-012-0560-z
Article

Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys

Author information +
History +
PDF

Abstract

The melt spinning technique, with an applied cooling rate of about 106 K/s, was used to produce a nanostructured Cu+13.2Al+ 5.1Ni (in wt%) shape memory alloy. The properties of nanostructured ribbons were then compared with those of conventional coarse structure. The microstructural evolution was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. Microhardness measurements indicate a two-fold increase in hardness because of the produced nanostructure. Comparing to its coarse structure, the nanostructured Cu-Al-Ni shape memory alloy exhibited the enhanced mechanical properties including a ductility of 6.5% and a pronounced plateau in the stress-strain curve.

Keywords

copper allosy / shape memory effect / melt spinning / mechanical properties / microstructural evolution

Cite this article

Download citation ▾
M. Izadinia, K. Dehghani. Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(4): 333-338 DOI:10.1007/s12613-012-0560-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang R., Gui J., Chen X., Tan S. EBSD and TEM study of self-accommodating martensites in Cu75.7Al15.4Mn8.9 shape memory alloy. Acta Mater., 2002, 50, 1835

[2]

Otsuka K., Sakamoto H., Shimizu K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metall., 1979, 27, 585

[3]

Sugimoto K., Kamei K., Matsumoto H., Komatsu S., Akamatsu K., Sugimoto T. Grain-refinement and the related phenomena in quaternary Cu-Al-Ni-Ti shape memory alloys. J. Phys. Paris Colloq., 1982, 43, 761

[4]

Yang G.S., Lee J.K., Jang W.Y., Jeong S.J., Inoue K. Effect of aging and microstructure on mechanical rolling CuAlNi shape memory alloy. Mater. Sci. Forum, 2007, 539–543, 3326

[5]

Chung C.Y., Lam C.W.H. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties. Mater. Sci. Eng. A, 1999, 273–275, 622

[6]

Zhang X., Atrens A. Rapid solidification characteristics in melt spinning. Mater. Sci. Eng. A, 1992, 159, 243

[7]

Liebermann H.H. Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, 1993, New York, CRC Press, 254.

[8]

Anantharaman T.R., Suryanarayana C. Rapidly Solidified Metals, 1987, Switzerland, Trans Tech Publications, 5.

[9]

Dehghani K., Salehi M., Salehi M., Aboutalebi H. Comparing the melt-spun nanostructured aluminum 6061 foils with conventional direct chill ingot. Mater. Sci. Eng. A, 2008, 489, 245

[10]

Salehi M., Dehghani K. Structure and properties of nanostructured aluminum A413.1 produced by melt spinning compared with ingot microstructure. J. Alloys Compd., 2008, 457, 357

[11]

Sutou Y., Kainuma R., Ishida K. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys. Mater. Sci. Eng. A, 1999, 273–275, 375

[12]

Morris M.A. Influence of boron additions on ductility and microstructure of shape memory Cu-Al-Ni alloys. Scripta Metall. Mater., 1991, 25, 2541

[13]

Morris M.A. High temperature properties of ductile Cu-Al-Ni shape memory alloys with boron additions. Acta Metall. Mater., 1992, 40, 1573

[14]

Saburi T., Wayman C.M. Crystallographic similarities in shape memory martensites. Acta Metall., 1979, 27, 979

[15]

Ünlü N., Genç A., Öveçoğlu M.L., Eruslu N., Froes F.H. Characterization investigations of melt-spun ternary Al-xSi-3.3Fe (x=10, 20 wt.%) alloys. J. Alloys Compd., 2001, 322, 249

[16]

Cullity B.D. Elements of X-Ray Diffraction, 1978 2nd Ed Massachusetts, Addison-Wesley Publishing Company, 87.

[17]

Dieter G.E. Mechanical Metallurgy, 1976, New York, McGraw-Hill Series, 68.

[18]

Zeller S., Gnauk J. Shape memory behavior of Cu-Al wires produced by horizontal in-rotating-liquid-spinning. Mater. Sci. Eng. A, 2008, 481–482, 562

[19]

Malarría J., Elgoyhen C., Vermaut P., Ochin P., Portier R. Shape memory properties of Cu-based thin tapes obtained by rapid solidification methods. Mater. Sci. Eng. A, 2006, 438–440, 763

[20]

Morawiec H., Lelatko J., Stróz D., Gigla M. Structure and properties of melt-spun Cu-Al-Ni shape memory alloys. Mater. Sci. Eng. A, 1999, 273–275, 708

[21]

Amelinckx S., Dekeyser W. The structure and properties of grain boundaries. Solid State Phys., 1959, 8, 325.

[22]

Sari U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys. Int. J. Miner., Metall. Mater., 2010, 17, 192

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/