Photoluminescence and cathodoluminescence properties of CaLaGa3O7:Eu3+ phosphors

Wen-yu Zhao , Sheng-li An , Bin Fan , Song-bo Li , Ya-tang Dai

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (3) : 271 -277.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (3) : 271 -277. DOI: 10.1007/s12613-012-0550-1
Article

Photoluminescence and cathodoluminescence properties of CaLaGa3O7:Eu3+ phosphors

Author information +
History +
PDF

Abstract

The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphor. The results revealed that the phosphor was composed of microspheres with a slight agglomerate phenomenon and was spherically shaped. The average grain size was about 1.0 μm. Eu3+ ions, as luminescent centers, substituted La3+ ions into the single crystal lattice of CaLaGa3O7 with the sites of Cs. Although the CL spectrum was greatly different from the PL spectrum, it had the strongest red emission corresponding to the 5D07F2 transition of Eu3+. Under the excitation of UV light (287 nm) and electron beams (1.0–7.0 kV), the chromaticity coordinates of the phosphor were found to be in the nearly red and orange light regions, respectively.

Keywords

luminescence / phosphors / coprecipitation / rare earths

Cite this article

Download citation ▾
Wen-yu Zhao, Sheng-li An, Bin Fan, Song-bo Li, Ya-tang Dai. Photoluminescence and cathodoluminescence properties of CaLaGa3O7:Eu3+ phosphors. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(3): 271-277 DOI:10.1007/s12613-012-0550-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu X.G., Chen J., Deng S.Z., Xu N.S., Lin J. Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application. J. Vac. Sci. Technol. B, 2010, 28(3): 490

[2]

N. Hirosaki, R.J. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays, Appl. Phys. Lett., 91(2007), No.6, art. No.061101.

[3]

Chen W.P., Liang H.B., Han B., Zhong J.P., Su Q. Emitting-color tunable phosphors Sr3GaO4F:Ce3+ at ultraviolet light and low-voltage electron beam excitation. J. Phys. Chem. C, 2009, 113(39): 17194

[4]

Wang Z.L., Hao J.H., Chan H.L.W. Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4:Yb3+,Er3+ submicron disks assembled from primary nanocrystals. J. Mater. Chem., 2010, 20, 3178

[5]

Liu X.M., Lin J. Synthesis and luminescent properties of LaInO3:RE3+ (RE = Sm, Pr and Tb) nanocrystalline phosphors for field emission displays. Solid State Sci., 2009, 11(12): 2030

[6]

Liu X.M., Lin J. LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays. J. Mater. Chem., 2008, 18, 221

[7]

V.R. Bandi, Y.T. Nien, and I.G. Chen, Enhancement of white light emission from novel Ca3Y2Si3O12:Dy3+ phosphors with Ce3+ ion codoping, J. Appl. Phys., 108(2010), No.2, art.No.023111.

[8]

Yokota H., Yoshida M., Ishibashi H., Yano T., Yamamoto H., Kikkawa S. Cathodoluminescence of Ce-doped Gd2SiO5 and Gd9.33(SiO4)6O2 phosphor under continuous electron irradiation. J. Alloys Compd., 2011, 509(3): 800

[9]

Ryba-Romanowski W., Gob S., Pisarski W.A., Dzik G. D.-, Berkowski M., Paj-czkowsk A. Investigation of Eu3+ sites in SrLaGa3O7, SrLaGaO4 and SrLaAlO4 crystals. J. Phys. Chem. Solids, 1997, 58(4): 639

[10]

Xu Z.H., Li C.X., Li G.G., Chai R.T., Peng C., Yang D.M., Lin J. Self-assembled 3D urchin-like NaY(MoO4)2: Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C, 2010, 114(6): 2573

[11]

Su Q. Rare Earth Chemistry, 1993, Zhengzhou, Henan Science and Technology Press, 8.

[12]

Kang M., Liu J., Yin G.F., Sun R. Preparation and characterization of Eu3+-doped CaCO3 phosphor by microwave synthesis. Rare Met., 2009, 28(5): 439

[13]

Blasse G., Grabmaier B.C. Luminescence Materials, 1994, Berlin, Springer-Verlag Press, 84

[14]

Flesch P. Light and Light Sources: High-Intensity Discharge Lamps, 2006, Berlin, Springer-Verlag Press, 12

[15]

Gao X.R., Lei L.X., Lv C.G., Sun Y.M., Zheng H.G., Cui Y.P. Preparation and photoluminescence property of a loose powder, Ca3Al2O6:Eu3+ by calcination of a layered double hydroxide precursor. J. Solid State Chem., 2008, 181(8): 1776

[16]

Lin J., Su Q. A study of site occupation of Eu3+ in Me2Y8(SiO4)6O2 (Me=Mg, Ca, Sr). Mater. Chem. Phys., 1994, 38(1): 98

[17]

Zhang S.Y. Spectroscopy of Rare Earth Ions: Spectral Property and Spectral Theory, 2008, Beijing, Science Press, 136.

[18]

Ozawa L. Cathodoluminescence and Photoluminescence: Theories and Practical Applications, 2007, New York, CRC Press, 8

[19]

Yang J., Zhang C.M., Li C.X., Yu Y.N., Lin J. Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process. Inorg. Chem., 2008, 47(16): 7262

[20]

Shang Y.C., Yang P.P., Wang W.X., Wang Y.L., Niu N., Gai S.L., Lin J. Sol-gel preparation and characterization of uniform core-shell structured LaInO3:Sm3+/Tb3+ @ SiO2 phosphors. J. Alloys Compd., 2011, 509(3): 837

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/