Enhanced thermoelectric properties of Co1−xyNi x+ySb3−xSn x materials

Hong-quan Liu , Sheng-nan Zhang , Tie-jun Zhu , Xin-bing Zhao , Yi-jie Gu , Hong-zhi Cui

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (3) : 240 -244.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (3) : 240 -244. DOI: 10.1007/s12613-012-0545-y
Article

Enhanced thermoelectric properties of Co1−xyNi x+ySb3−xSn x materials

Author information +
History +
PDF

Abstract

Co1−xyNix+ySb3−xSn x polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite Co1−xNi xSb3−xSn x was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb2.88Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Co0.88Ni0.12Sb2.88Sn0.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.19Sb2.88Sn0.12 reaches 3.0 mW·m−1·K−2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12.

Keywords

thermoelectric material / polycrystals / skutterudites / alloying / thermoelectric properties / dopping

Cite this article

Download citation ▾
Hong-quan Liu, Sheng-nan Zhang, Tie-jun Zhu, Xin-bing Zhao, Yi-jie Gu, Hong-zhi Cui. Enhanced thermoelectric properties of Co1−xyNi x+ySb3−xSn x materials. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(3): 240-244 DOI:10.1007/s12613-012-0545-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He Q.Y., Hu S.J., Tang X.G, Lan Y.C., Yang J., Wang X.W., Ren Z.F., Hao Q., Chen G. The great improvement effect of pores on ZT in Co1−x NixSb3 system. Appl. Phys. Lett., 2008, 93, 042108.

[2]

Liu W.S., Zhang B.P., Li J.F., Zhang H.L., Zhao L.D. Enhanced thermoelectric properties in CoSb3−x Tex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys., 2007, 102, 103717.

[3]

Shi X., Kong H., Li C.P., Uher C., Yang J., Wang H., Chen L., Zhang W. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett., 2008, 92, 182101.

[4]

Tang X.F., Zhang Q.J., Chen L.D., Goto T., Hirai T. Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−x Sb12 (R:Ce,Ba,Y;M:Fe,Ni). J. Appl. Phys., 2005, 97, 093712.

[5]

Mi J.L., Zhu T.J., Zhao X.B., Ma J. Thermoelectric properties of skutterudites FexNiyCo1−xySb3 (x = y). J. Alloys Compd., 2008, 452, 225

[6]

Alboni P.N., Ji X., He J., Gothard N., Tritt T.M. Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites. J. Appl. Phys., 2008, 103, 113707.

[7]

Snyder G.J., Toberer E.S. Complex thermoelectric materials. Nat. Mater., 2008, 7, 105

[8]

Mi J.L., Zhu T.J., Zhao X.B., Ma J. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3. J. Appl. Phys., 2007, 101, 054314.

[9]

Sales B.C., Mandrus D., Chakoumakos B.C., Keppens V., Thompson J.R. Electron crystals and phonon glasses filled skutterudite antimonides. Phys. Rev. B, 1997, 56, 15081

[10]

He T., Chen J.Z., Rosenfeld H.D., Subramanian M.A. Thermoelectric properties of indium-filled skutterudites. Chem. Mater., 2006, 18, 759

[11]

Liu W.S., Zhang B.P., Li J.F., Zhao L.D. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D, 2007, 40, 6784

[12]

Singh D.J., Pickett W.E. Skutterudite antimonides: Quasilinear bands and unusual transport. Phys. Rev. B, 1994, 50, 11235

[13]

Mandrus D., Migliori A., Darling T.W., Hundley M.F., Peterson E.J., Thompson J.D. Electronic transport in lightly doped CoSb3. Phys. Rev. B, 1995, 52, 4926

[14]

Arushanov E., Respaud M., Rakoto H., Broto J.M., Caillat T. Shubnikov-de Haas oscillations in CoSb3 single crystals. Phys. Rev. B, 2000, 61, 4672

[15]

Lue C.S., Lin Y.T., Kuo C.N. NMR investigation of the skutterudite compound CoSb3. Phys. Rev. B, 2007, 75, 075113.

[16]

Anno H., Matsubara K., Notohara Y., Sakakibara T., Tashiro H. Effects of doping on the transport properties of CoSb3. J. Appl. Phys., 1999, 86, 3780

[17]

Puyet M., Dauscher A., Lenoir B., Bellouard C., Stiewe C., Muller E., Hejtmanek J., Tobola J. Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites CayCo4−x NixSb12. Phys. Rev. B, 2007, 75, 245110.

[18]

Pei Y.Z., Chen L.D., Zhang W., Shi X., Bai S.Q., Zhao X.Y., Mei Z.G., Li X.Y. Synthesis and thermoelectric properties of KyCo4Sb12. Appl. Phys. Lett., 2006, 89, 221107.

[19]

Caillat T., Borshchevsky A., Fleurial J.P. Properties of single crystalline semiconducting CoSb3. J. Appl. Phys., 1996, 80, 4442

[20]

Kitagawa H., Wakatsukia M., Nagaoka H., Noguchi H., Isoda Y., Hasezaki K. Temperature dependence of thermoelectric properties of Ni-doped CoSb3. J. Phys. Chem. Solids, 2005, 66, 1635

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/