Mechanical properties of Mn-doped ZnO nanowires studied by first-principles calculations

Zhan-jun Gao , You-song Gu , Xue-qiang Wang , Yue Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (1) : 89 -94.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (1) : 89 -94. DOI: 10.1007/s12613-012-0520-7
Article

Mechanical properties of Mn-doped ZnO nanowires studied by first-principles calculations

Author information +
History +
PDF

Abstract

First-principles calculations were performed to investigate the mechanical properties of ZnO nanowires and to study the doping and size effects. A series of strains were applied to ZnO nanowires in the axial direction and the elastic moduli of ZnO nanowires were obtained from the energy versus strain curves. Pure and Mn-doped ZnO nanowires with three different diameters (1.14, 1.43, and 1.74 nm) were studied. It is found that the elastic moduli of the ZnO nanowires are 146.5, 146.6, and 143.9 GPa, respectively, which are slightly larger than that of the bulk (140.1 GPa), and they increase as the diameter decreases. The elastic moduli of the Mn-doped ZnO nanowires are 137.6, 141.8, and 141.0 GPa, which are slightly lower than those of the undoped ones by 6.1%, 3.3%, and 2.0%, respectively. The mechanisms of doping and size effect were discussed in terms of chemical bonding and geometry considerations.

Keywords

zinc oxide / nanowires / mechanical properties / doping / first-principles calculations / manganese

Cite this article

Download citation ▾
Zhan-jun Gao, You-song Gu, Xue-qiang Wang, Yue Zhang. Mechanical properties of Mn-doped ZnO nanowires studied by first-principles calculations. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(1): 89-94 DOI:10.1007/s12613-012-0520-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Minne S.C., Manalis S.R., Quate C.F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl. Phys. Lett., 1995, 67(26): 3918

[2]

Gorla C.R., Emanetoglu N.W., Liang S., Mayo W.E., Lu Y., Wraback M., Shen H.J. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys., 1999, 85(5): 2595

[3]

Hu Y., Zhang Y., Xu C., Zhu G., Wang Z.L. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett., 2010, 10(12): 5025

[4]

Bai X.D., Gao P. X., Wang Z.L., Wang E.G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett., 2003, 82, 4806

[5]

Yum K., Wang Z., Suryavanshi A.P., Yu M.F. Experimental measurement and model analysis of damping effect in nanoscale mechanical beam resonators in air. J. Appl. Phys., 2004, 96(7): 3933

[6]

Song J., Wang X., Riedo E., Wang Z.L. Elastic property of vertically aligned nanowires. Nano Lett., 2005, 5(10): 1954

[7]

Huang Y.H., Bai X.D., Zhang Y. In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. J. Phys. Condens. Matter, 2006, 18(15): L179

[8]

Chen C.Q., Shi Y., Zhang Y.S., Zhu J., Yan Y.J. Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett., 2006, 96, 1.

[9]

Stan G., Ciobanu C.V., Parthangal P. M., Cook R.F. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett., 2007, 7(12): 3691

[10]

B. Wen, J.E. Sader, and J.J. Boland, Mechanical properties of ZnO nanowires, Phys. Rev. Lett., 101(2008), No.17, art. No.175502.

[11]

Fan C.Z., Wang Q., Li L.X., Zhang S.H., Zhu Y., Zhang X.Y., Ma M.Z., Liu R.P., Wang W.K. Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory. Appl. Phys. Lett., 2008, 92, 101917.

[12]

Huang Y.H., Zhang Y., Wang X.Q., Bai X.D., Gu Y.S., Yan X.Q., Liao Q.L., Qi J.J., Liu J. Size independence and doping dependence of bending modulus in ZnO nanowires. Cryst. Growth Des., 2009, 9(4): 1640

[13]

Riaz M., Fulati A., Amin G., Alvi N.H., Nur O., Willander M. Buckling and elastic stability of vertical ZnO nanotubes and nanorods. J. Appl. Phys., 2009, 106, 034309.

[14]

Lucas M., Wang Z.L., Riedo E. In situ study of point defects and mechanical properties in individual ZnO nanobelts. Appl. Phys. Lett., 2009, 95, 051904.

[15]

Chen Y.Q., Zheng X.J., Mao S.X., Li W. Nanoscale mechanical behavior of vanadium doped ZnO piezoelectric nanofiber by nanoindentation technique. J. Appl. Phys., 2010, 107, 094302.

[16]

Yan X.D., Dickinson M., Schirer J.P., Zou C.W., Gao W. Face dependence of mechanical properties of a single ZnO nano/microrod. J. Appl. Phys., 2010, 108, 056101.

[17]

Kulkarni A.J., Zhou M., Ke F.J. Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology, 2005, 16(12): 2749

[18]

G. Wang and X. Li, Size dependency of the elastic modulus of ZnO nanowires: Surface stress effect, Appl. Phys. Lett., 91(2007), No.23, art. No.231912.

[19]

Li C., Guo W.L., Kong Y., Gao H.J. First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures. Phys. Rev. B, 2007, 76, 035322.

[20]

Cao G.X., Chen X. Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Phys. Rev. B, 2007, 76, 165407.

[21]

Agrawal R., Peng B., Gdoutos E.E., Espinosa H.D. Elasticity size effects in ZnO nanowires—A combined experimental-computational approach. Nano Lett., 2008, 8(11): 3668

[22]

J. Hu, X.W. Liu, and B.C. Pan, A study of the size-dependent elastic properties of ZnO nanowires and nanotubes, Nanotechnology, 19(2008), No.28, art. No.285710.

[23]

Hu J., Pan B.C. Surface effect on the size- and orientation-dependent elastic properties of single-crystal ZnO nanostructures. J. Appl. Phys., 2009, 105, 034302.

[24]

Liu X.J., Li J.W., Zhou Z.F., Yang L.W., Ma Z.S., Xie G.F., Pan Y., Sun C.Q. Size-induced elastic stiffening of ZnO nanostructures: Skin-depth energy pinning. Appl. Phys. Lett., 2009, 94, 131902.

[25]

Qi J.S., Shi D.N., Wang B.L. Different mechanical properties of the pristine and hydrogen passivated ZnO nanowires. Comput. Mater. Sci., 2009, 46(2): 303

[26]

Lin X.X., Zhu Y.F., Shen W.Z. Synthesis and optical and magnetic properties of diluted magnetic semiconductor Zn1xMnxO hollow spherical structures. J. Phys. Chem. C, 2009, 113(5): 1812

[27]

E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, and J.M. Soler, The Siesta method; developments and applicability, J. Phys. Condens. Matter, 20(2008), No.6, art. No.064208.

[28]

Soler J.M., Artacho E., Gale J.D., García A., Junquera J., Ordejón P., Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter, 2002, 14(11): 2745

[29]

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865

[30]

Ding Y., Wang Z.L. Profile imaging of reconstructed polar and non-polar surfaces of ZnO. Surf. Sci., 2007, 601(2): 425

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/