Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions

Jin-jie Shi , Wei Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (1) : 38 -47.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2012, Vol. 19 ›› Issue (1) : 38 -47. DOI: 10.1007/s12613-012-0512-7
Article

Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions

Author information +
History +
PDF

Abstract

Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential (E corr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP). A field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray analysis (EDXA) was used for observing the microstructures and morphology of corrosion products of steel. The results indicate that, compared with the commonly used nitrite-based inhibitors, Na3PO4 is not a good inhibitor, while BTA may be a potentially effective inhibitor to prevent steel from corrosion in simulated concrete pore solutions.

Keywords

steel / corrosion inhibitors / electrochemical analysis / concrete / solutions

Cite this article

Download citation ▾
Jin-jie Shi, Wei Sun. Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(1): 38-47 DOI:10.1007/s12613-012-0512-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi X.M., Yang Z.X., Nguyen T.A., Suo Z.Y., Avci R., Song S.Z. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors. Sci. China Ser. E, 2009, 52(1): 52

[2]

Ngala V.T., Page C.L., Page M.M. Investigations of an ethanolamine-based corrosion inhibitor system for surface treatment of reinforced concrete. Mater. Corros., 2004, 55(7): 511

[3]

Ormellese M., Bolzoni F., Lazzari L., Pedeferri P. Effect of corrosion inhibitors on the initiation of chloride-induced corrosion. Mater. Corros., 2008, 59(2): 98

[4]

Berke N.S., Hicks M.C., Malone J., Rieder K.A. Concrete durability—a holistic approach. Concr. Int., 2005, 27(8): 63.

[5]

Söylev T.A., Richardson M.G. Corrosion inhibitors for steel in concrete: State-of-the-art report. Constr. Build. Mater., 2008, 22(4): 609

[6]

Ann K.Y., Jung H.S., Kim H.S., Kim S.S., Moon H.Y. Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cem. Concr. Res., 2006, 36(3): 530

[7]

Reou J.S., Ann K.Y. The electrochemical assessment of corrosion inhibition effect of calcium nitrite in blended concretes. Mater. Chem. Phys., 2008, 109(2–3): 526

[8]

Etteyeb N., Sanchez M., Dhouibi L., Alonso C., Andrade C., Triki E. Corrosion protection of steel reinforcement by a pretreatment in phosphate solutions: Assessment of passivity by electrochemical techniques. Corros. Eng. Sci. Technol., 2006, 41(4): 336

[9]

Dhouibi L., Triki E., Raharinaivo A., Trabanelli G., Zucchi F. Electrochemical methods for evaluating inhibitors of steel corrosion in concrete. Br. Corros. J., 2000, 35(2): 146

[10]

Génin J.M.R., Dhouibi L., Refait P., Abdelmoula M., Triki E. Influence of phosphate on corrosion products of iron in chloride-polluted-concrete-simulating solutions: Ferrihydrite vs green rust. Corrosion, 2002, 58(6): 467

[11]

Allam N.K., Nazeer A.A., Ashour E.A. A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments. J. Appl. Electrochem., 2009, 39(7): 961

[12]

Sheban M., Abu-Dalo M., Ababneh A., et al. Effect of benzotriazole derivatives on the corrosion of steel in simulated concrete pore solutions. Anti-Corros. Methods Mater., 2007, 54(3): 135

[13]

Mennucci M.M., Banczek E.P., Rodrigues P.R.P., Costa I. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution. Cem. Concr. Compos., 2009, 31(6): 418

[14]

Poursaee A., Hansson C.M. Reinforcing steel passivation in mortar and pore solution. Cem. Concr. Res., 2007, 37(7): 1127

[15]

Stern M., Geary A.L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc., 1957, 104(1): 56

[16]

Andrade C., Alonso C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build. Mater., 1996, 10, 315

[17]

Andrade C., Keddam M., Nóvoa X.R., Pérez M.C., Rangel C.M., Takenouti H. Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry. Electrochim. Acta, 2001, 46(24–25): 3905

[18]

Valcarce M.B., Vázquez M. Carbon steel passivity examined in alkaline solutions: The effect of chloride and nitrite ions. Electrochim. Acta, 2008, 53(15): 5007

[19]

Zhong J.Y., Sun M., Liu D.B., Li X.G., Liu T.Q. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels. Int. J. Miner. Metall. Mater., 2010, 17(3): 282

[20]

Zhang W.H., Yang S.W., Guo J., Liu Z.Y., He X.L. Incubation and development of corrosion in microstructures of low alloy steels under a thin liquid film of NaCl aqueous solution. Int. J. Miner. Metall. Mater., 2010, 17(6): 748

[21]

Hurley M.F., Scully J.R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel. Corrosion, 2006, 62(10): 892

[22]

Moreno M., Morris W., Alvarez M.G., Duffó G.S. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content. Corros. Sci., 2004, 46(11): 2681

[23]

Koleva D.A., Hu J., Fraaij A.L.A., Stroeven P., Boshkov N., de Wit J.H.W. Quantitative characterisation of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack. Corros. Sci., 2006, 48(12): 4001

[24]

Bertolini L., Elsener B., Pedeferri P., Polder R. Corrosion of Steel in Concrete, 2004, Weinheim, Wiley-VCH, 218.

[25]

Böhni H. Corrosion in Reinforced Concrete Structures, 2005, Abington, Woodhead Publishing Ltd., 194

[26]

Nguyen T.A., Shi X.M. A mechanistic study of corrosion inhibiting admixtures. Anti-Corros. Methods Mater., 2009, 56(1): 3

[27]

Reffass M., Sabot R., Jeannin M., Berziou C., Refait Ph. Effects of phosphate species on localised corrosion of steel in NaHCO3+NaCl electrolytes. Electrochim. Acta, 2009, 54(18): 4389

[28]

Chen Y.F., Wang W., Yang J.X. Inhibition effects of di-(2-ethylhexyl)-sebacate on corrosion of reinforcing steel in stimulated concrete pore solution. J. Univ. Sci. Technol. Beijing, 2007, 29(Suppl.1): 21.

[29]

Trépanier S.M., Hope B.B., Hansson C.M. Corrosion inhibitors in concrete: part III. Effect on time to chlorideinduced corrosion initiation and subsequent corrosion rates of steel in mortar. Cem. Concr. Res., 2001, 31(5): 713

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/