Effect of nitrogen introduction methods on the microstructure and properties of gradient cemented carbides

Tian-en Yang , Ji Xiong , Lan Sun , Zhi-xing Guo , Ding Cao

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 709 -716.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 709 -716. DOI: 10.1007/s12613-011-0501-2
Article

Effect of nitrogen introduction methods on the microstructure and properties of gradient cemented carbides

Author information +
History +
PDF

Abstract

Gradient cemented carbides with the surface depleted in cubic phases were prepared following normal powder metallurgical procedures. Gradient zone formation and the influence of nitrogen introduction methods on the microstructure and performance of the alloys were investigated. The results show that the simple one-step vacuum sintering technique is doable for producing gradient cemented carbides. Gradient structure formation is attributed to the gradient in nitrogen activity during sintering, but is independent from nitrogen introduced methods. A uniform carbon distribution is found throughout the materials. Moreover, the transverse rupture strength of the cemented carbides can be increased by a gradient layer. Different nitrogen carriers give the alloys distinguishing microstructure and mechanical properties, and a gradient alloy with ultrafine-TiC0.5N0.5 is found optimal.

Keywords

gradient cemented carbide / gradient methods / nitrogen / microstructure / mechanical properties / sintering

Cite this article

Download citation ▾
Tian-en Yang, Ji Xiong, Lan Sun, Zhi-xing Guo, Ding Cao. Effect of nitrogen introduction methods on the microstructure and properties of gradient cemented carbides. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(6): 709-716 DOI:10.1007/s12613-011-0501-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Frykholm R., Jansson B., Andrén H.O. The influence of carbon content on formation of carbo-nitride free surface layers in cemented carbides. Int. J. Refract Met. Hard Mater., 2002, 20, 345.

[2]

Suzuki H., Hayashi K., Taniguchi Y. The beta-free layer formed near the surface of vacuum-sintered WC-beta-Co alloys containing nitrogen. Trans. Jpn. Inst. Met., 1981, 22, 758.

[3]

Schwarzkopf M., Exner H.E., Fischmeister H.F., Schintlmeister W. Kinetics of compositional modification of (W,Ti)C-WC-Co alloy surfaces. Mater. Sci. Eng. A, 1988, 105–106, 225.

[4]

Gustafson P., Östlund A. Binder-phase enrichment by dissolution of cubic carbides. Int. J. Refract Met. Hard Mater., 1994, 12, 129.

[5]

Frykholm R., Ekroth M., Jansson B., et al. Effect of cubic phase composition on gradient zone formation in cemented carbides. Int. J. Refract Met. Hard Mater., 2001, 19, 527.

[6]

Lengauer W. Diffusional control of the near-surface microstructure in functional gradient hardmetals. Materialwiss. Werkstofftech., 2005, 36(10): 460.

[7]

Frykholm R., Jansson B., Andrén H.O. Methods for atom probe analysis of microgradients in functionally graded cemented carbides. Micron, 2002, 33, 639.

[8]

Ekroth M., Frykholm R., Lindholm M., et al. Gradient zones in WC-Ti(C,N)-based cemented carbides: experimental study and computer simulations. Acta Mater., 2000, 48, 2177.

[9]

Frykholm R., Andrén H.O. Development of the microstructure during gradient sintering of a cemented carbide. Mater. Chem. Phys., 2001, 67, 203.

[10]

Li J.R. The technology study of the depleted cubic phase layer in cemented carbide. Cemented Carbide, 2004, 21(4): 197.

[11]

Chen L.M., Lengauer W., Ettmayer P. Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGCC). Int. J. Refract Met. Hard Mater., 2000, 18, 307.

[12]

Chen L., Wu E.X., Wang S.Q., et al. Formation mechanism of surface ductile zones in WC-Ti(C,N)-Co gradient cemented carbide. J. Cent. South Univ. Sci. Technol., 2006, 37(4): 650.

[13]

Kingery W.D., Berg M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self diffusion. J. Appl. Phys., 1955, 26(10): 1205.

[14]

Lee S.M., Kang S.L. Theoretical analysis of liquid-phase sintering: pore filling theory. Acta Mater., 1998, 46(9): 3191.

[15]

Xiong J., Shen B.L. Present status of investigation for super-fine cermets. Tool Eng., 2003, 37(4): 10.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/