Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes

Jun-hui Nie , Cheng-chang Jia , Na Shi , Ya-feng Zhang , Yi Li , Xian Jia

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 695 -702.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 695 -702. DOI: 10.1007/s12613-011-0499-5
Article

Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes

Author information +
History +
PDF

Abstract

To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites, CNTs were coated by molybdenum layers using metal organic chemical vapor deposition, and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering. The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated. The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders. The electrical conductivity of the composites decreases with increasing Mo-CNT content. When the Mo-CNT content is 0.5wt%, the tensile strength and hardness of Mo-CNT/Al reach their maximum values. The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%, while the electrical conductivity only decreases by 7.1%, relative to sintered pure Al. The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.

Keywords

carbon nanotubes / aluminum matrix composites / molybdenum layer / mechanical properties / electrical conductivity

Cite this article

Download citation ▾
Jun-hui Nie, Cheng-chang Jia, Na Shi, Ya-feng Zhang, Yi Li, Xian Jia. Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(6): 695-702 DOI:10.1007/s12613-011-0499-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naji S.M., Zebarjad S.M., Sajjadi S.A. The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites. Mater. Sci. Eng. A, 2008, 486(1–2): 413.

[2]

Xu X.J., Ge X.H. Superplasticity of SiC whisker aluminum matrix composite. Acta. Mater. Compos. Sin., 2003, 20(3): 127.

[3]

Noguchi T., Magario A., Fukazawa S., et al. Carbon nanotube/aluminium composites with uniform dispersion. Mater. Trans., 2004, 45(2): 602.

[4]

George R., Kashyap K.T., Rahul R., Yamdagni S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta. Mater., 2005, 53(10): 1159.

[5]

Esawi A.M.K., El Borady M.A. Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol., 2008, 68(2): 486.

[6]

Ebbesen T.W. Wetting, filling and decorating carbon nanotubes. J. Phys. Chem. Solids, 1996, 57(6–8): 951.

[7]

Dujardin E., Ebbesen T.W., Hiura H., Tanigaki K. Capillarity and wetting of carbon nanotubes. Science, 1994, 265(5180): 1850.

[8]

Laha T., Kuchibhatla S., Seal S., et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater., 2007, 55(3): 1059.

[9]

Kwon H., Estili M., Takagi K., et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 2009, 47(3): 570.

[10]

Kim C., Lim B., Kim B., et al. Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements. Synth. Met., 2009, 159(5–6): 424.

[11]

Shi X.L., Yang H., Shao G.Q., et al. Fabrication and properties of W-Cu alloy reinforced by multi-walled carbon nanotubes. Mater. Sci. Eng. A, 2007, 457(1–2): 18.

[12]

Chen X.H., Xia J.T., Peng J.C., et al. Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol., 2000, 60(2): 301.

[13]

Liu F., Zhang X.B., Cheng J.P., et al. Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon, 2003, 41(13): 2527.

[14]

Smart S.K., Ren W.C., Cheng H.M., Lu G.Q. Shortened double walled carbon nanotubes by high-energy ball milling. Int. J. Nanotechnol., 2007, 4(5): 618.

[15]

Esawi A.M.K., Morsi K., Sayed A., et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng. A, 2009, 508(1–2): 167.

[16]

Pérez-Bustamante R., Gómez-Esparza C.D., Estrada-Guel I., et al. Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A, 2009, 502(1–2): 159.

[17]

Kuzumaki T., Miyazawa K., Ichinose H., Ito K. Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res., 1998, 13(9): 2445.

[18]

Zhang X., Zhang J., Wang R., et al. Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Chem. Phys. Chem., 2004, 5(7): 998.

[19]

Sundaray B., Subramanian V., Natarajan T.S., Krishnamurthy K. Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl. Phys. Lett., 2006, 88, 143114.

[20]

Ci L.J., Ryu Z., Jin-Phillipp N., Rühle M. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater., 2006, 54(20): 5367.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/