Covalent electron density analysis and surface energy calculation of gold with the empirical electron surface model

Bao-qin Fu , Zhi-lin Li , Wei Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 676 -682.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 676 -682. DOI: 10.1007/s12613-011-0495-9
Article

Covalent electron density analysis and surface energy calculation of gold with the empirical electron surface model

Author information +
History +
PDF

Abstract

Based on the empirical electron surface model (EESM), the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold, and the surface energy was calculated further. Calculation results show that CEDDB has a great influence on the surface energy of various index surfaces and the anisotropy of the surface. The calculated surface energy is in agreement with experimental and other theoretical values. The calculated surface energy of the close-packed (111) surface has the lowest surface energy, which agrees with the theoretical prediction. Also, it is found that the spatial distribution of covalent bonds has a great influence on the surface energy of various index surfaces. Therefore, CEDDB should be a suitable parameter to describe and quantify the dangling bonds and surface energy of various crystal surfaces.

Keywords

surface energy / dangling bonds / covalent bonds / electron density / gold

Cite this article

Download citation ▾
Bao-qin Fu, Zhi-lin Li, Wei Liu. Covalent electron density analysis and surface energy calculation of gold with the empirical electron surface model. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(6): 676-682 DOI:10.1007/s12613-011-0495-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guczi L., Beck A., Frey K. Role of promoting oxide morphology dictating the activity of Au/SiO2 catalyst in CO oxidation. Gold Bull., 2009, 42(1): 5.

[2]

Li J., Ta N., Song W., et al. Au/ZrO2 catalysts for low-temperature water gas shift reaction: influence of particle sizes. Gold Bull., 2009, 42(1): 48.

[3]

Ikezawa Y., Koda Y., Shibuya M., Terashima H. In situ FTIR study of pyrazine adsorbed on Au(111), Au(100) and Au(110) electrodes. Electronchim. Acta, 2000, 45(13): 2075.

[4]

Surnev S., Voigtländer B., Bonzel H.P., Mullins W. W. Anisotropic profile decay on perturbed Au(111) vicinal surfaces. Surf. Sci., 1996, 360(1–3): 242.

[5]

Tyson W.R., Miller W.A. Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf. Sci., 1977, 62(1): 267.

[6]

Boer F.R. d., Boom R., Mattens W.C.M., et al. Cohesion in Metals, 1988 Amsterdam, North-Holland, 53.

[7]

Kumikov V.K., Khokonov Kh.B. On the measurement of surface free energy and surface tension of solid metals. J. Appl. Phys., 1983, 54(3): 1346.

[8]

Galanakis I., Papanikolaou N., Dederichs P.H. Applicability of the broken-bond rule to the surface energy of the fcc metals. Surf. Sci., 2002, 511(1–3): 1.

[9]

Vitos L., Ruban A.V., Skriver H.L., Kollár J. The surface energy of metals. Surf. Sci., 1998, 411(1–2): 186.

[10]

Methfessel M., Hennig D., Scheffler M. Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. Phys. Rev. B, 1992, 46(8): 4816.

[11]

Skriver H.L., Rosengaard N.M. Surface energy and work function of elemental metals. Phys. Rev. B, 1992, 46(11): 7157.

[12]

Kollár J., Vitos L., Skriver H.L. Surface energy and work function of the light actinides. Phys. Rev. B, 1994, 49(16): 11288.

[13]

Błoński P., Kiejna A. Calculation of surface properties of bcc iron. Vacuum, 2004, 74(2): 179.

[14]

Spencer M.J.S., Hung A., Snook I.K., Yarovsky I. Density functional theory study of the relaxation and energy of iron surfaces. Surf. Sci., 2002, 513(2): 389.

[15]

Zhang J.M., Wang D.D., Xu K.W. Calculation of the surface energy of bcc transition metals by using the second nearest-neighbor modified embedded atom method. Appl. Surf. Sci., 2006, 252(23): 8217.

[16]

Kokko K., Salo P.T., Laihia R., Mansikka K. First-principles calculations for work function and surface energy of thin lithium films. Surf. Sci., 1996, 348(1–2): 168.

[17]

Mehl M.J., Papaconstantopoulos D.A. Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Phys. Rev. B, 1996, 54(7): 4519.

[18]

Barreteau C., Spanjaard D., Desjonquères M.C. Electronic structure and energetics of transition metal surfaces and clusters from a new spd tight-binding method. Surf. Sci., 1999, 433, 751.

[19]

Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 1986, 33(12): 7983.

[20]

Baskes M.I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B, 1992, 46(5): 2727.

[21]

P. van Beurden and G.J. Kramer, Parametrization of modified embedded-atom-method potentials for Rh, Pd, Ir, and Pt based on density functional theory calculations, with applications to surface properties, Phys. Rev. B, 63(2001), No.16, art.No.165106.

[22]

Wolf D. Correlation between energy, surface tension and structure of free surfaces in fcc metals. Surf. Sci., 1990, 226(3): 389.

[23]

Ackland G.J., Tichy G., Vitek V., Finnis M.W. Simple N-body potentials for the noble metals and nickel. Philos. Mag. A, 1987, 56(6): 753.

[24]

Rodríguez A.M., Bozzolo G., Ferrante J. Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory. Surf. Sci., 1993, 289(1-2): 100.

[25]

Fu B.Q., Liu W., Li Z.L. Calculation of the surface energy of bcc-metals with the empirical electron theory. Appl. Surf. Sci., 2009, 255(20): 8511.

[26]

Fu B.Q., Liu W., Li Z.L. Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl. Surf. Sci., 2009, 255(23): 9348.

[27]

Fu B.Q., Liu W., Li Z.L. Calculation of the surface en ergy of fcc-metals with the empirical electron surface model. Appl. Surf. Sci., 2010, 256(22): 6899.

[28]

Fu B.Q., Liu W., Li Z.L. Surface energy calculation of alkali metals with the empirical electron surface model. Mater. Chem. Phys., 2010, 123(2–3): 658.

[29]

Zhang R.L. The Empirical Electron Theory in Solids and Molecules, 1993 Changchun, Jinlin Science and Technology Press, 35.

[30]

Yu R.H. The empirical electron theory in solids and molecules. Chin. Sci. Bull., 1978, 23(4): 217.

[31]

Liu Z.L., Li Z.L., Liu W.D. Electron Structure of Interface and Their Properties, 2002 Beijing, Science Press, 23.

[32]

Li Z.L., Xu J., Fu B.Q., Liu W. Influence of aluminium on the valence electron density of the interface between the bond-coat and the thermally grown oxide of thermal barrier coatings. Solid State Sci., 2008, 10(10): 1434.

[33]

Li Z.L., Huang Q., Wu Y.Q., Li Z.F. Application of the C-Me segregating theory in solid alloys to ceramics. Sci. China Ser. E, 2007, 50(4): 462.

[34]

Li Z.L., Xu H.B., Gong S.K. Interface conjunction factors of thermal barrier coatings and the relationship between factors and composition. Sci. China Ser. E, 2003, 46(3): 234.

[35]

Xu W.D., Zhang R.L., Yu R.H. Calculations for crystal cohesive energy of transition metal compound. Sci. China Ser. A, 1989, 32(3): 351.

[36]

Zhang J.M., Ma F., Xu K.W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci., 2004, 229(1–4): 34.

[37]

Trimble T.M., Cammarata R.C. Many-body effects on surface stress, surface energy and surface relaxation of fcc metals. Surf. Sci., 2008, 602(14): 2339.

[38]

Takeuchi N., Chan C.T., Ho K.M. Au(111): a theoretical study of the surface reconstruction and the surface electronic structure. Phys. Rev. B, 1991, 43(17): 13899.

[39]

Crljen Šokčević D., Brako R., Lazić P. DFT calculations of (111) surfaces of Au, Cu, and Pt: stability and reconstruction. Vacuum, 2003, 71(1–2): 101.

[40]

Boer F.R., Boom R., Mattens W.C.M., et al. Cohesion in Metals, 1988 Amsterdam, North-Holland, 58.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/