Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy

S. Engin , U. Böyük , H. Kaya , N. Maraşlı

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 659 -664.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (6) : 659 -664. DOI: 10.1007/s12613-011-0492-z
Article

Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy

Author information +
History +
PDF

Abstract

Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32–250.0 μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus. The values of eutectic spacing were measured from transverse sections of the samples. The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V −0.53 and ΔT=0.0245V 0.53, respectively. The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature. Microhardness of directionally solidified samples was also measured by using a microhardness test device. The dependency of the microhardness on growth rate is found as Hv=115.64V 0.13. Afterwards, the electrical resistivity (r) of the casting alloy changes from 40×10−9 to 108×10−9 Ω·m with the temperature rising in the range of 300–630 K. The enthalpy of fusion (ΔH) and specific heat (C p) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K), respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid.

Keywords

eutectic alloys / directional solidification / microhardness / electrical conductivity / enthalpy / specific heat

Cite this article

Download citation ▾
S. Engin, U. Böyük, H. Kaya, N. Maraşlı. Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(6): 659-664 DOI:10.1007/s12613-011-0492-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rhême M., Gonzales F., Rappaz M. Growth directions in directionally solidified Al-Zn and Zn-Al alloys near eutectic composition. Scripta Mater., 2008, 59, 440.

[2]

Osório W.R., Freire C.M.A., Garcia A. Dendritic solidification microstructure affecting mechanical and corrosion properties of a Zn4Al alloy. J. Mater Sci., 2005, 40, 4493.

[3]

Zhang C., Wu Y., Fang M., et al. Formation mechanism of the Zn-5% Al hot-dip coating amorphous alloys (I). Chin. Sci. Bull., 1997, 42, 2067.

[4]

Gonzales F., Rappaz M. Dendrite growth directions in aluminum-zinc alloys. Metall. Mater. Trans. A, 2006, 37, 2797.

[5]

Aresa A.E., Gueijmanb S.F., Caramc R., Schvezov C.E. Analysis of solidification parameters during solidification of lead and aluminum base alloys. J. Cryst. Growth, 2005, 275, e319.

[6]

Yang C., Li B.S., Ren M.X., Fu H.Z. Studies of microstructures made of Zn-Al alloys using microcasting. Int. J. Adv. Manuf. Technol., 2010, 46, 173.

[7]

Aresa A.E., Gassac L.M., Gueijmanb S.F., Schvezova C.E. Correlation between thermal parameters, structures, dendritic spacing and corrosion behavior of Zn-Al alloys with columnar to equiaxed transition. J. Cryst. Growth., 2008, 310, 1355.

[8]

Osório W.R., Spinelli J.E., Cheung N., Garcia A. Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al-10wt% Sn and Al-20wt% Zn alloys. Mater. Sci. Eng. A, 2006, 420, 179.

[9]

Jackson K.A., Hunt J.D. Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME, 1966, 236, 1129.

[10]

Bluni S.T. Solidification of Eutectic and off-Eutectic Al-Zn Alloys, 1994 Bethlehem, Lehight University

[11]

Böyük U., Engin S., Maraşlı N. Novel experimental technique to observe the equilibrated grain boundary groove shapes in opaque alloys. J. Alloys Compd., 2009, 476, 213.

[12]

Ares A.E., Schvezov C.E. Influence of solidification thermal parameters on the columnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys. Metall. Mater. Trans. A, 2007, 38, 1485.

[13]

Keşlioğlu K., Maraşlı N. Experimental determination of solid-liquid interfacial energy for Zn solid solution in equilibrium with the Zn-Al eutectic liquid. Metall. Mater. Trans. A, 2004, 35, 3665.

[14]

Ourdjini A., Liu J., Elliott R. Eutectic spacing selection in Al-Cu system. Mater. Sci. Technol., 1994, 10, 312.

[15]

Kaya H., Çadırlı E., Gündüz M. Eutectic growth of unidirectionally solidified bismuth-cadmium alloy. J. Mater. Process. Technol., 2007, 183, 310.

[16]

Kaya H., Çadırlı E., Gündüz M. Effect of growth rates and temperature gradients on the spacing and undercooling in the broken-lamellar eutectic growth (Sn-Zn eutectic system). J. Mater. Eng. Perform., 2003, 12(4): 456.

[17]

Robinson P. Practical Specific Heat Determination by Power Compensation DSC, 2003 UK, PerkinElmer Seer Green, 12.

[18]

De Wilde J., Froyen L., Rex S. Coupled two-phase [α(Al)+θ(Al2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al-Cu-Ag alloys. Scripta Mater., 2004, 51, 533.

[19]

Çadırlı E., Böyük U., Kaya H., et al. The effect of growth rate on microstructure and microindentation hardness in the In-Bi-Sn ternary alloy at low melting point. J. Alloys Compd., 2009, 470, 150.

[20]

Witusiewicz V.T., Hecht U., Rex S., Apel M. In situ observation of microstructure evolution in low-melting Bi-In-Sn alloys by light microscopy. Acta Mater., 2005, 53, 3663.

[21]

Çadırlı E., Böyük U., Engin S., et al. Experimental investigation of the effect of solidification processing parameters on rod spacings in the Sn-1.2wt% Cu alloy. J. Alloys Compd., 2009, 486, 199.

[22]

Wilde J., Froyen L., Witusiewicz V.T., Hecht U. Two-phase planar and regular lamellar coupled growth along the univariant eutectic reaction in ternary alloys: An analytical approach and application to the Al-Cu-Ag system. J. Appl. Phys., 2005, 97, 113515.

[23]

Moore A., Elliott R. The Solidification of Metals, 1968 London, The Iron and Steel Institute

[24]

Lee J.H., Yoshikawa A., Fukuda T., Waku Y. Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers. J. Cryst. Growth, 2001, 231, 115.

[25]

Kaya H., Çadırlı E., Böyük U., Maraşlı N. Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys. Appl. Surf. Sci., 2008, 255, 3071.

[26]

Khan S., Ourdjini A., Hamed Q.S., et al. Hardness and mechanical property relationships in directionally solidified aluminium-silicon eutectic alloys with different silicon morphologies. J. Mater. Sci., 1993, 28, 5957.

[27]

Kaya H., Gündüz M., Çadırlı E., Uzun O. Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb-Cd, Sn-Zn and Bi-Cd eutectic alloys. J. Mater. Sci., 2004, 39, 6571.

[28]

Lapin J., Ondrúš Nazmy M. Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds. Intermetallics, 2002, 10, 1019.

[29]

Rudnev V., Loveless D., Cook R., Black M. Handbook of Induction Heating, 2003 New York, Markel Dekker Inc., 119.

[30]

El-Ashram T., Shalaby R.M. Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu eutectic alloy. J. Electron. Mater., 2005, 34, 212.

[31]

Saatçi B., Ari M., Gündüz M., et al. Thermal and electrical conductivities of Cd-Zn alloys. J. Phys Condens. Matter, 2006, 18, 10643.

[32]

Çadırlı E., Böyük U., Engin S., et al. Variations of microhardness with the solidification processing parameters and thermo-electrical properties with the temperature in the Sn-Cu alloy. Kovove Mater., 2009, 47, 381.

[33]

Böyük U., Kaya H., Çadırlı E., et al. Investigation of the effect of solidification processing parameters on microhardness and determination of thermo-physical properties in the Zn-Cu peritectic alloy. J. Alloys Compd., 2010, 491, 143.

[34]

Hultgren R., Orr R.L., Anderson P.D., Kelley K.K. Selected Values of Thermodynamic Properties of Metals and Alloys, 1963 Berkeley, John Wiley & Sons Inc., 318.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/