Thermal conductivity model of filled polymer composites

Ming-xia Shen , Yin-xin Cui , Jing He , Yao-ming Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 623 -631.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 623 -631. DOI: 10.1007/s12613-011-0487-9
Article

Thermal conductivity model of filled polymer composites

Author information +
History +
PDF

Abstract

Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s. The effects of particle shape, filler amount, dispersion state of fillers, and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated, and the agreement of experimental data with theoretical models in literatures was discussed. Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films. Experimental data of the co-films’ thermal conductivity were compared with some classical theoretical and empirical models. The results show that Agari’s model, the mixed model, and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films.

Keywords

polymer matrix composites / thermal conductivity / mathematical models / polyvinyl acetates / silica / filled polymers

Cite this article

Download citation ▾
Ming-xia Shen, Yin-xin Cui, Jing He, Yao-ming Zhang. Thermal conductivity model of filled polymer composites. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5): 623-631 DOI:10.1007/s12613-011-0487-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu J.R., Zhang X.H., Xu C.X. Research and applications of thermal conducting polymer. Polym.Mater. Sci. Eng., 2000, 16(4): 17.

[2]

Du M.P., Wei B.R. Recent advance in research on thermal conductive polymer material. Chin. Plast. Ind., 2007, 35(Suppl.1): 54.

[3]

K.S. Li and Q. Wang, Advances in thermal conductive polymeric materials, J. Funct.Mater., 2002, No.2, p.136.

[4]

C.G. Ma, M.Z. Rong, and M.Q. Zhang, Advances in study of thermal conducting polymers composites and their application, J. Mater.Eng., 2002, No.7, p.40.

[5]

Zhang S., Ma Y.M., Wang F.S. Thermal conductive and electrical insulating polymer composites. Plastics, 2007, 36(3): 41.

[6]

Zhou W.Y., Qi S.H., Tu C.C., et al. Study of insulating thermal conductive polymer composites. Chin. Plast. Ind., 2005, 33(Suppl.1): 99.

[7]

C.M. Ye and Y.L. Chen, Heat conduction mechanism, types and application of polymer composites of heat conduction, Chin. Plast., 2002, No.12, p.14.

[8]

Shen L., Zhang Z.Y., Wang J.J., et al. Electrical and thermal conductivity of polymers loaded with conductive filler. Polym. Mater. Sci. Eng., 2006, 22(4): 107.

[9]

Tang M.M., Rong M.Z., Ma C.G., et al. Effect of surface treatment and particle size of alumina filler on thermal conductivity of SBR. Chin. Synth. Rubber Ind., 2003, 26(2): 104.

[10]

Zhang L., Li C.Z., Zhou Q.L., Shao W. Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: Effect of the interfacial compatibilizer and the particle size. J. Mater. Sci., 2007, 42(12): 4227.

[11]

Every A.G., Tzou Y., Hasselman D.P.H., Raj R. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall. Mater., 1992, 40(1): 123.

[12]

Bhatt H., Donaldson Y.K., Hasselman D.P.H., et al. Role of the interfacial thermal barrier in the effective thermal diffusivity/conductivity of SiC-fiber-reinforced reaction-bonded silicon nitride. J. Am. Ceram. Soc., 1990, 73(2): 312.

[13]

C.M. Ye and Y.L. Chen, Heat conduction mechanism, types and application of polymer composites of heat conduction, China Plast., 2002, No.12, p.14.

[14]

Tao G.L. Design, Manufacture and Application Technologies of Advanced Composites with High Thermal Conductivity, 2006 Nanjing, Nanjing University of Technology, 109.

[15]

G. Yan, B.R. Wei, H.T. Yang, et al., Research progress in thermal conductive models of polymer based composite, Fiber Reinf. Plast. Compos., 2006, No.3, p.50.

[16]

Wang J.J., Yi X.S. Thermal conductive high performance polymer microelectronic packaging material: II Thermal conductivity and thermal expansion of the packaging material. Packag. Eng., 2003, 24(4): 13.

[17]

X.Y. Deng and B.L. Rao, Heat-conduction theories of powder-filled polymer composites, Aerosp. Mater. Technol., 2008, No.2, p.18.

[18]

Agari Y., Uno T.R. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci., 1986, 32, 5705.

[19]

Tavman I.H. Thermal and mechanical properties of copper powder filled poly(ethylene) composites. Powder Technol., 1997, 91(1): 63.

[20]

Wong C.P., Bollampally R.S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci., 1999, 74(14): 3396.

[21]

Agari Y., Tanaka M., Nagai S., et al. Thermal conductivity of a polymer composite filled with mixtures of particles. J. Appl. Polym. Sci., 1987, 34(4): 1429.

[22]

Tekce H.S., Kumlutas D., Tavman I.H. Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos., 2007, 26(1): 113.

[23]

Wang J.J., Yi X.S. Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Compos. Sci. Technol., 2004, 64(10–11): 1623.

[24]

Wang J.J. Preparation and Investigation on the Polyimide/AlN Composites Materials, 2001 Hangzhou, Zhejiang University, 62.

[25]

Yin X.H., Kobayashi K., Yoshino K., et al. Percolation conduction in polymer composites containing polypyrrole coated insulating polymer fiber and conducting polymer. Synth. Met., 1995, 69, 367.

[26]

Lee G.W., Park M., Kim J., et al. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A, 2006, 37(5): 727.

[27]

B. Li, Z. Li, and B. Zheng, Properties and interfacial treatment effect on thermal conductivity and electrical insulativity of the polymer composites, J. East China Univ. Sci. Technol. Nat. Sci. Ed., 2008, No.2, p.219.

[28]

Zallen R. Physics of Non-crystal Solid, 1988 Beijing, Peking University Press, 32.

[29]

Liu B.Q., Lu T. The Introduction of Application on Percolation Theory, 1997 Bejing, Scientific Press, 52.

[30]

Vysotsky V.V., Roldughin V.I. Aggregate structure and percolation properties of metal-filled polymer films. Colloid Surf. A, 1999, 160, 171.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/