Electroless copper-phosphorus coatings with the addition of silicon carbide (SiC) particles

Soheila Faraji , Afidah Abdul Rahim , Norita Mohamed , Coswald Stephen Sipaut

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 615 -622.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 615 -622. DOI: 10.1007/s12613-011-0486-x
Article

Electroless copper-phosphorus coatings with the addition of silicon carbide (SiC) particles

Author information +
History +
PDF

Abstract

Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating. The effects of pH values, temperature, and different concentrations of sodium hypophosphite (NaH2PO2·H2O), nickel sulfate (NiSO4·6H2O), sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated, and the bath formulation for Cu-P-SiC composite coatings was optimised. The coating compositions were determined using energy-dispersive X-ray analysis (EDX). The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows: pH 9; temperature, 90°C; NaH2PO2·H2O concentration, 125 g/L; NiSO4·6H2O concentration, 3.125 g/L; SiC concentration, 5 g/L; and C6H5Na3O7·2H2O concentration, 50 g/L. The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed. The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.

Keywords

electroless deposited coating / electroless copper plating / silicon carbide particles / sodium hypophosphite / hardness / wear resistance

Cite this article

Download citation ▾
Soheila Faraji, Afidah Abdul Rahim, Norita Mohamed, Coswald Stephen Sipaut. Electroless copper-phosphorus coatings with the addition of silicon carbide (SiC) particles. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5): 615-622 DOI:10.1007/s12613-011-0486-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mallory G.O., Hadju J.B. Electroless Plating-Fundamentals and Applications, 1990 New York, Noyes Publications

[2]

Li N. Applied Technology of Electroless Plating, 2003 Beijing, Chemical Industry Press, 10.

[3]

Wu S.S., Liu W.L., Tsai T.K., et al. Growth behavior of electroless copper on silicon substrate. J. Univ. Sci. Technol. Beijing, 2007, 14(1): 67.

[4]

Li D., Goodwin K., Yang C.L. Electroless copper deposition on aluminum-seeded ABS plastics. J. Mater. Sci., 2008, 43(22): 7121.

[5]

Ma C., Ye W., Shi X., et al. Comparative study of electroless copper deposition based on the seed layers of Pd, PtPd and AuPd. Appl. Surf. Sci., 2009, 255(6): 3713.

[6]

Yanagimoto H., Deki S., Akamatsu K., Gotoh K. Selective electroless copper deposition on aluminum nitride substrate with patterned copper seed layer. Thin Solid Films, 2005, 491(1–2): 18.

[7]

Wu X., Sha W. Surface morphology of electroless copper deposits using different reducing agents. Synth. React. Inorg. Met. Org. Nano Met. Chem., 2008, 38(3): 292.

[8]

Wu X., Sha W. Experimental study of the voids in the electroless copper deposits and the direct measurement of the void fraction based on the scanning electron microscopy images. Appl. Surf. Sci., 2009, 255(7): 4259.

[9]

Vaškelis A., Jačiauskiene J., Stalnioniene I., Norkus E. Accelerating effect of ammonia on electroless copper deposition in alkaline formaldehyde-containing solutions. J. Electroanal. Chem., 2007, 600(1): 6.

[10]

Cheng D.H., Xu W.Y., Zhang Z.Y., Yiao Z.H. Electroless copper plating using hypophosphite as reducing agent. Met. Finish., 1997, 95(1): 34.

[11]

Liu R., Zong W., Gao C., Chi Z., Zhang L. New and clean strategy for the determination of Cu2+ in electroless copper plating baths. Spectrochim. Acta Part A, 2007, 68(1): 150.

[12]

Gan X., Wu Y., Liu L., et al. Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surf. Coat. Technol., 2007, 201(16–17): 7018.

[13]

Gan X.P., Wu Y.T., Liu L., Hu W.B. Effect of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent. J. Appl. Electrochem., 2007, 37(8): 899.

[14]

Gan X.P., Wu Y.T., Liu L., et al. Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics. J. Alloys Compd., 2008, 455(1–2): 308.

[15]

León C.A., Mendoza-Suarez G., Drew R.A.L. Wettability and spreading kinetics of molten aluminum on copper-coated ceramics. J. Mater. Sci., 2006, 41(16): 5081.

[16]

Pelleg J., Ruhr M., Ganor M. Control of the reaction at the fibre-matrix interface in a Cu/SiC metal matrix composite by modifying the matrix with 2.5 wt.% Fe. Mater. Sci. Eng. A, 1996, 212(1): 139.

[17]

Li Y., Wang R., Qi F., Wang C. Preparation, characterization and microwave absorption properties of electroless Ni-Co-P-coated SiC powder. Appl. Surf. Sci., 2008, 254(15): 4708.

[18]

Gao J.Q., Liu C.L., Wu Y.T., et al. Electroless Ni-P-SiC composite coatings with superfine particles. Surf. Coat. Technol., 2006, 200(20–21): 5836.

[19]

Zhang S., Han K., Cheng L. The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings. Surf. Coat. Technol., 2008, 202(12): 2807.

[20]

Zhao H.F., Tang W.Z., Li C.M., et al. Thermal conductive properties of Ni-P electroless plated SiCp/Al composite electronic packaging material. Surf. Coat. Technol., 2008, 202(12): 2540.

[21]

Liu Y., Zhao Q. Study of electroless Ni-Cu-P coatings and their anti-corrosion properties. Appl. Surf. Sci., 2004, 228(1–4): 57.

[22]

Oraon B., Majumdar G., Ghosh B. Application of response surface method for predicting electroless nickel plating. Mater. Des., 2006, 27(10): 1035.

[23]

Palaniappa M., Seshadri S.K. Hardness and structural correlation for electroless Ni alloy deposits. J. Mater. Sci., 2007, 42(16): 6600.

[24]

Liu W.L., Hsieh S.H., Hwang S.J., et al. Tribological properties of electroless Ni-P-SiC composite coatings in rolling/sliding contact under boundary lubrication. J. Univ. Sci. Technol. Beijing, 2007, 14(2): 167.

[25]

Grosjean A., Rezrazi M., Takadoum J., Berçot P. Hardness, friction and wear characteristics of nickel-SiC electroless composite deposits. Surf. Coat. Technol., 2001, 137(1): 92.

[26]

An Z., Ohi A., Hirai M., et al. Study of the reaction at Cu/3C-SiC interface. Surf. Sci., 2001, 493(1–3): 182.

[27]

Gan K., Gu M., Mu G. Effect of Fe on the properties of Cu/SiCp composite. J. Mater. Sci., 2008, 43(4): 1318.

[28]

Ramesh C.S., Ahmed R. N., Mujeebu M.A., Abdullah M.Z. Development and performance analysis of novel cast copper-SiC-Gr hybrid composites. Mater. Des., 2009, 30(6): 1957.

[29]

Shu K.M., Tu G.C. Fabrication and characterization of Cu-SiCp composites for electrical discharge machining application. Mater. Manuf. Processes, 2001, 16(4): 483.

[30]

Ashassi-Sorkhabi H., Dolati H., Parvini-Ahmadi N., Manzoori J. Electroless deposition of Ni-Cu-P alloy and study of the influences of some parameters on the properties of deposits. Appl. Surf. Sci., 2002, 185(3–4): 155.

[31]

Zhang Y., Binner J. Effect of dispersants on the rheology of aqueous silicon carbide suspensions. Ceram. Int., 2008, 34(6): 1381.

[32]

Li W., Zhang Q., Gu M., Jin Y. Effect of temperature on rheological behavior of silicon carbide aqueous suspension. Ceram. Int., 2006, 32(7): 761.

[33]

Liu L., Zhao H., Hu W., Shen B. Analysis of tensile strength and microstructure of Ni-SiC composites prepared by electroforming. Mater. Lett., 2005, 59(24–25): 3014.

[34]

Wu Y.T., Lei L., Shen B., Hu W.B. Investigation in electroless Ni-P-Cg(graphite)-SiC composite coating. Surf. Coat. Technol., 2006, 201(1–2): 441.

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/