Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities

Hong-tao Gao , Yuan-yuan Liu , Cui-hong Ding , Dong-mei Dai , Guang-jun Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 606 -614.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 606 -614. DOI: 10.1007/s12613-011-0485-y
Article

Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities

Author information +
History +
PDF

Abstract

Nitrogen and sulfur doped titanium dioxide photocatalysts were prepared by the sol-gel method. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra (DRS). Photocatalytic activities of the samples were investigated on the degradation of methyl orange (MO). The effect of the dopants on the electronic structure of TiO2 was studied by the first-principles calculations based on the density functional theory (DFT). The orbital hybridization resulted in energy gap narrowing and electronic delocalization in the crystal of doped TiO2. Mobile electrons of varied energetic states could offer enhanced electron transfer, together with optical absorption improvement. The results show that the doping elements of N and S play a cooperative role in the modification of electronic structure, which enhances the photocatalytic performance. The experimentally observed absorption edges of N-doped TiO2, S-doped TiO2, and N, S-codoped TiO2 are 420, 413, and 429 nm, respectively, which can be explained by the theoretical calculation results.

Keywords

titanium dioxide / doping / electronic structure / red shift / photocatalysis / nanoparticles

Cite this article

Download citation ▾
Hong-tao Gao, Yuan-yuan Liu, Cui-hong Ding, Dong-mei Dai, Guang-jun Liu. Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5): 606-614 DOI:10.1007/s12613-011-0485-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun J.H., Qiao L.P., Sun S.P., Wang G.L. Photocatalytic degradation of orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J. Hazard. Mater., 2008, 155(1–2): 312.

[2]

Dai K., Peng T.Y., Chen H., et al. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environ. Sci. Technol., 2008, 42(5): 1505.

[3]

Jagadale T.C., Takale S.P., Sonawane R.S., et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J. Phys. Chem. C, 2008, 112(37): 14595.

[4]

Khan S.U.M., Al-Shahry M., Ingler W.B.Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243.

[5]

Huo Y.N., Bian Z.F., Zhang X.Y., et al. Highly active TiO2−xNx visible photocatalyst prepared by N-doping in Et3N/EtOH fluid under supercritical conditions. J. Phys. Chem. C, 2008, 112(16): 6546.

[6]

Tang X.H., Li D.Y. Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C, 2008, 112(14): 5405.

[7]

Zhou J.K., Lv L., Yu J.Q., et al. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J. Phys. Chem. C, 2008, 112(14): 5316.

[8]

Su W.Y., Zhang Y.F., Li Z.H., et al. Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir, 2008, 24(7): 3422.

[9]

Sato S. Photocatalytic activity of NOx doped TiO2 in the visible light region. Chem. Phys. Lett., 1986, 123(1–2): 126.

[10]

Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269.

[11]

Qiu X.F., Burda C. Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chem. Phys., 2007, 339(1–3): 1.

[12]

Colpini L.M.S., Alves H.J., Santos O.A.A., Costa C.M.M. Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method. Dyes Pigm., 2008, 76(2): 525.

[13]

Zhu J.F., Zheng W., He B., et al. Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A, 2004, 216(1): 35.

[14]

Kim Y.J., Chai S.Y., Lee W.I. Control of TiO2 structures from robust hollow microspheres to highly dispersible nanoparticles in a tetrabutylammonium hydroxide solution. Langmuir, 2007, 23(19): 9567.

[15]

Seifried S., Winterer M., Hahn H. Nanocrystalline titania films and particles by chemical vapor synthesis. Chem. Vapor Depos., 2000, 6(5): 239.

[16]

Hsieh C.S., Zhu H., Wei T.Y., et al. Applying the experimental statistical method to deal the preparatory conditions of nanometric-sized TiO2 powders from a two-emulsion process. J. Eur. Ceram. Soc., 2008, 28(6): 1177.

[17]

Zhang Z.H., Yuan Y., Shi G.Y., et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ. Sci. Technol., 2007, 41(17): 6259.

[18]

Ryu Y.B., Lee M.S., Jeong E.D., et al. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using different amine group-containing organics and their photocatalytic activity. Catal. Today, 2007, 124(3—4): 88.

[19]

Hidalgo M.C., Aguilar M., Maicu M., Navío J.A., Colón G. Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal. Today, 2007, 129(1–2): 50.

[20]

Colón G., Hidalgo M.C., Navío J.A., et al. Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Appl. Catal. B, 2008, 78(1–2): 176.

[21]

Liu Y., Chen X., Li J., Burda C. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005, 61(1): 11.

[22]

Lettmann C., Hildenbrand K., Kisch H., et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B, 2001, 32(4): 215.

[23]

Lopez T., Gomez R., Sanchez E., et al. Photocatalytic activity in the 2,4-dinitroaniline decomposition over TiO2 sol-gel derived catalysts. J. Sol Gel. Sci. Technol., 2001, 22(1–2): 99.

[24]

Yu J.G., Liu S.W., Zhou M.H. Enhanced photocalytic activity of hollow anatase microspheres by Sn4+ incorporation. J. Phys. Chem. C, 2008, 112(6): 2050.

[25]

J. Taylor, H. Guo, and J. Wang, Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B, 63(2001), No.12, art. No.121104.

[26]

Valentin C.D., Pacchioni G., Selloni A. Theory of carbon doping of titanium dioxide. Chem. Mater., 2005, 17(26): 6656.

[27]

Yang K.S., Dai Y., Huang B.B., Whangbo M.H. Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem. Mater., 2008, 20(20): 6528.

[28]

Kamisaka H., Adachi T., Yamashita K. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J. Chem. Phys., 2005, 123(8): 1.

[29]

Valentin C. D., Pacchioni G., Selloni A., et al. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B, 2005, 109(23): 11414.

[30]

Gao H., Zhou J., Dai D., Qu Y. Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: a combined experimental and theoretical study. Chem. Eng. Technol., 2009, 32(6): 867.

[31]

Tian F.H., Liu C.B. DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. J. Phys. Chem. B, 2006, 110(36): 17866.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/