Influence of Ag doping on the microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics

Long-Biao Zhu , Da-yang Chen , Xin-xin Wu , Qing-dong Zhong , Yu-fa Qi , Li-yi Shi

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 600 -605.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 600 -605. DOI: 10.1007/s12613-011-0484-z
Article

Influence of Ag doping on the microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics

Author information +
History +
PDF

Abstract

Silver in the form of AgNO3 was added to ZnO-based varistor ceramics prepared by the solid-state reaction method. The effects of AgNO3 on both the microstructure and electrical properties of the varistors were studied in detail. The optimum addition amount of AgNO3 in ZnO-based varistors was also determined. The mechanism for grain growth inhibition by silver doping was also proposed. The results indicate that the varistor threshold voltage increases substantially along with the AgNO3 content increasing from 0 to 1.5mol%. Also, the introduction of AgNO3 can depress the mean grain size of ZnO, which is mainly responsible for the threshold voltage. Furthermore, the addition of AgNO3 results in a slight decrease of donor density and a more severe fall in the density of interface states, which cause a decline in barrier height and an increase in the depletion layer.

Keywords

ceramic materials / varistors / silver / microstructure / electrical properties / zinc oxide

Cite this article

Download citation ▾
Long-Biao Zhu, Da-yang Chen, Xin-xin Wu, Qing-dong Zhong, Yu-fa Qi, Li-yi Shi. Influence of Ag doping on the microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5): 600-605 DOI:10.1007/s12613-011-0484-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta T.K. Application of zinc oxide varistors. J. Am. Ceram. Soc., 1990, 73(7): 1817.

[2]

Bernik S., Maček S., Bui A. The characteristics of ZnO-Bi2O3-based varistor ceramics doped with Y2O3 and varying amounts of Sb2O3. J. Eur. Ceram. Soc., 2004, 24(6): 1195.

[3]

Peiteado M. Zinc oxide-based ceramic varistors. Bol. Soc. Esp. Ceram. Vidrio, 2005, 44(2): 77.

[4]

Fan J., Freer R. The electrical properties and d.c. degradation characteristics of silver doped ZnO varistors. J. Mater. Sci., 1993, 28(5): 1391.

[5]

Leach C. Grain boundary structures in zinc oxide varistors. Acta Mater., 2005, 53(2): 237.

[6]

Fan J.W., Freer R. The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors. J. Appl. Phys., 1995, 77(9): 4795.

[7]

Nahm C.W. Effect of cooling rate on degradation characteristics of ZnO·Pr6O11·CoO·Cr2O3·Y2O3-based varistors. Solid State Commun., 2004, 132(3–4): 213.

[8]

Bernik S., Daneu N. Characteristics of ZnO-based varistor ceramics doped with Al2O3. J. Eur. Ceram. Soc., 2007, 27(10): 3161.

[9]

Branković Z., Branković G., Bernik S., Žunić M. ZnO varistors with reduced amount of additives prepared by direct mixing of constituent phases. J. Eur. Ceram. Soc., 2007, 27(2–3): 1101.

[10]

Peiteado M., Fernández J.F., Caballero A.C. Varistors based in the ZnO-Bi2O3 system: Microstructure control and properties. J. Eur. Ceram. Soc., 2007, 27(13–15): 3867.

[11]

Bernik S., Branković G., Rustja S., et al. Microstructural and compositional aspects of ZnO-based varistor ceramics prepared by direct mixing of the constituent phases and high-energy milling. Ceram. Int., 2008, 34(6): 1495.

[12]

Yang C.C., Chen M.S., Hong T.J., Wu C.M. Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3. Appl. Phys. Lett., 1995, 66(20): 2643.

[13]

Morris W.G. Physical properties of the electrical barriers in varistors. J. Vac. Sci. Technol., 1976, 13(4): 926.

[14]

Weast R.C. Handbook of Chemistry and Physics, 1989 Boca Raton, CRC Press, B-68.

[15]

Mukae K., Tsuda K., Nagasawa I. Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics. J. Appl. Phys., 1977, 16(8): 1361.

[16]

Nahm C.W. The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors. Mater. Sci. Eng. B, 2007, 136(2–3): 134.

[17]

Pianaro S.A., Bueno P.R., Olivi P., et al. Effect of Bi2O3 addition on the microstructure and electrical properties of the SnO2·CoO·Nb2O5 varistor system. J. Mater. Sci. Lett., 1997, 16(8): 634.

[18]

Gupta T.K., Miller A.C. Improved stability of the ZnO varistor via donor and acceptor doping at the grain boundary. J. Mater. Sci., 1988, 3(4): 745.

[19]

Zhou Z., Kato K., Komaki T., et al. Effects of dopants and hydrogen on the electrical conductivity of ZnO. J. Eur. Ceram. Soc., 2004, 24(1): 139.

[20]

Mukae K., Tsuda K., Nagasawa I. Capacitance-vs-voltage characteristics of ZnO varistors. J. Appl. Phys., 1979, 50(6): 4475.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/