Mechanical properties of directionally solidified lead-antimony alloys

Mevlüt Şahin , Hasan Kaya

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 582 -588.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 582 -588. DOI: 10.1007/s12613-011-0481-2
Article

Mechanical properties of directionally solidified lead-antimony alloys

Author information +
History +
PDF

Abstract

The Pb-17wt% Sb alloy was directionally solidified under two solidification conditions: with different temperature gradients (G=0.93–3.67 K/mm) at a constant growth rate (V=17.50 μm/s) and with different growth rates (V=8.3–497 μm/s) at a constant temperature gradient (G=3.67 K/mm) in a Bridgman furnace. Microstructure parameters, such as primary dendrite arm spacing (λ 1), secondary dendrite arm spacing (λ 2), and dendrite tip radius (R), were measured. The microhardness (Hv) and ultimate tensile strength (σ) of the directional solidification samples were also measured. The influences of solidification and microstructure parameters on Hv and σ were investigated. The results obtained in this work were compared with similar experimental researches in literatures. It is shown that the Hv and σ values increase with the increase of G and V, but decrease with the increase of λ 1, λ 2, and R.

Keywords

lead-antimony alloy / directional solidification / microstructure / mechanical properties

Cite this article

Download citation ▾
Mevlüt Şahin, Hasan Kaya. Mechanical properties of directionally solidified lead-antimony alloys. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5): 582-588 DOI:10.1007/s12613-011-0481-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jullian E., Albert L., Caillerie J.L. New lead alloys for high-performance lead-acid batteries. J. Power Sources, 2003, 116(1–2): 185.

[2]

Sahota M.K., Riddington J.R. Compressive creep properties of lead alloys. Mater. Des., 2000, 21(3): 159.

[3]

Mahmudi R., Geranmayeh A.R., Rezaee-Bazzaz A. Impression creep behavior of cast Pb-Sb alloys. J. Alloys Compd., 2007, 427(1–2): 124.

[4]

Osório W.R., Rosa D.M., Garcia A. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids. J. Power Sources, 2008, 175(1): 595.

[5]

Glicksman M.E., Koss M.B., Winsa E.A. Dendritic growth velocities in microgravity. Phys. Rev. Lett., 1994, 73(4): 573.

[6]

Kaya H., Çadırlı E., Gündüz M., Ülgen A. Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy. J. Mater. Eng. Perform., 2003, 12(5): 544.

[7]

Kaya H., Gündüz M., Çadırlı E., Uzun O. Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb-Cd, Sn-Zn and Bi-Cd eutectic alloys. J. Mater. Sci., 2004, 39(21): 6571.

[8]

Fatahalla N., Hafız M., Abdulkhalek M. Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al-Si alloy modified with Na, Sb and Sr. J. Mater. Sci., 1999, 34(14): 3555.

[9]

Liu X.D., Nagumo M., Umemoto M. The Hall-Petch relationship in nanocrystalline materials. Mater. Trans. JIM, 1997, 38(12): 1033.

[10]

Khan S., Ourdjini A., Hamed Q.S., Najafabadi M.A. A., Elliott R. Hardness and mechanical property relationships in directionally solidified aluminium-silicon eutectic alloys with different silicon morphologies. J. Mater. Sci., 1993, 28(21): 5957.

[11]

Kaya H., Çadırlı E., Böyük U., Maraşlı N. Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys. Appl. Surf. Sci., 2008, 255, 3071.

[12]

Kaya H., Gündüz M., Çadırlı E., Maraşl’ N. Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys. J. Alloys Compd., 2009, 478(1–2): 281.

[13]

Modi O.P., Deshmukh N., Mondal D.P., Jha A.K., Yegneswaran A.H., Khaira H.K. Effect of interlamellar spacing on the mechanical properties of 0.65% C steel. Mater. Charact., 2001, 46(5): 347.

[14]

Liu H.Y., Li Y., Jones H. Thermal stability of the αZn-Mg2Zn11 and αZn-βAl eutectics obtained by Bridgman growth. J. Mater. Sci., 1998, 33(5): 1159.

[15]

Shabestari S.G., Shahri F. Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J. Mater. Sci., 2004, 39(6): 2023.

[16]

Hong S.J., Kim S.S., Lee J.H., Kwon Y.N., Lee Y.S., Lee J.H. Effect of microstructural variables on tensile behaviour of A356 cast aluminium alloy. Mater. Sci. Technol., 2007, 23(7): 810.

[17]

Fawzy A., Awadallah A.S.M., Sobhy M., Saad G. Precipitation kinetics in quenched and slowly cooled Pb-1.5wt% Sb alloy specimens. Phys. B, 2005, 355(1–4): 286.

[18]

Mahmudi R., Roumina R., Raeisinia B. Investigation of stress exponent in the power-law creep of Pb-Sb alloys. Mater. Sci. Eng. A, 2004, 382(1-2): 15.

[19]

Osorio W.R., Gaulart P.R., Garcia A., Santos G.A., Neto C.M. Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 wt pct Si and Zn 27wt pct Al alloys. Metall. Mater. Trans. A, 2006, 37(8): 2525.

[20]

Hall E.O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Sect. B, 1951, 64(9): 747.

[21]

Petch N.J. The cleavage strength of polycrystals. J. Iron Steel Inst., 1953, 174, 25.

[22]

Bhat M.S., Poirier D.R., Heinrich J.C. Permeability for cross flow through columnar-dendritic alloys. Metall. Mater. Trans. B, 1995, 26(5): 1049.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/